
Package ‘stdmod’
January 7, 2026

Title Standardized Moderation Effect and Its Confidence Interval

Version 0.2.12

Description Functions for computing a standardized moderation effect
in moderated regression and forming its confidence interval
by nonparametric bootstrapping as proposed in
Cheung, Cheung, Lau, Hui, and Vong (2022)
<doi:10.1037/hea0001188>. Also includes simple-to-use
functions for computing conditional effects (unstandardized
or standardized) and plotting moderation effects.

URL https://sfcheung.github.io/stdmod/

BugReports https://github.com/sfcheung/stdmod/issues

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Suggests testthat, knitr, rmarkdown, visreg, lm.beta

Config/testthat/edition 3

Config/testthat/parallel true

Depends R (>= 4.0.0)

Imports boot, ggplot2, stats, utils, lavaan, manymome, rlang

VignetteBuilder knitr

NeedsCompilation no

Author Shu Fai Cheung [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9871-9448>),

David Weng Ngai Vong [ctb]

Maintainer Shu Fai Cheung <shufai.cheung@gmail.com>

Repository CRAN

Date/Publication 2026-01-07 21:10:02 UTC

1

https://doi.org/10.1037/hea0001188
https://sfcheung.github.io/stdmod/
https://github.com/sfcheung/stdmod/issues
https://orcid.org/0000-0002-9871-9448

2 add1.std_selected

Contents
add1.std_selected . 2
coef.cond_effect . 3
coef.stdmod_lavaan . 4
cond_effect . 5
confint.cond_effect . 9
confint.stdmod_lavaan . 11
confint.std_selected . 12
plotmod . 14
print.cond_effect . 17
print.stdmod_lavaan . 19
print.std_selected . 20
print.summary.std_selected . 21
sleep_emo_con . 23
stdmod . 23
stdmod_lavaan . 26
std_selected . 30
summary.std_selected . 34
test_mod1 . 35
test_mod2 . 35
test_mod3_miss . 36
test_x_1_w_1_v_1_cat1_n_500 . 37
test_x_1_w_1_v_1_cat1_xw_cov_n_500 . 37
test_x_1_w_1_v_1_cat1_xw_cov_wcat3_n_500 . 38
test_x_1_w_1_v_2_n_500 . 38
update.std_selected . 39
vcov.std_selected . 40

Index 42

add1.std_selected The ’add1’ Method for a ’std_selected’ Class Object

Description

Intercept the add1() method and raise an error.

Usage

S3 method for class 'std_selected'
add1(object, ...)

Arguments

object The output of std_selected() or std_selected_boot().

... Additional arguments. They will be ignored.

coef.cond_effect 3

Details

add1() should not be used after the output of lm() is processed by std_selected() or std_selected_boot().

Value

It returns nothing. It is called for its side effect.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

coef.cond_effect Conditional Effect in a ’cond_effect’-Class Object

Description

Return the estimates of the conditional effects in the output of cond_effect() or cond_effect_boot().

Usage

S3 method for class 'cond_effect'
coef(object, ...)

Arguments

object The output of cond_effect() or cond_effect_boot().

... Optional arguments. Ignored by the function.

Details

It just extracts and returns the column of conditional effects in a cond_effect-class object.

Value

A numeric vector: The estimates of the conditional effects in a cond_effect-class object.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

https://orcid.org/0000-0002-9871-9448
https://orcid.org/0000-0002-9871-9448

4 coef.stdmod_lavaan

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)
out <- cond_effect(lm_raw, x = iv, w = mod)
out
coef(out)

lm_std <- std_selected(lm_raw, to_standardize = ~ iv + mod)
out <- cond_effect(lm_std, x = iv, w = mod)
out
coef(out)

Categorical moderator
lm_cat <- lm(dv ~ iv*cat1 + v1, dat)
summary(lm_cat)
out <- cond_effect(lm_cat, x = iv, w = cat1)
out
coef(out)

coef.stdmod_lavaan Standardized Moderation Effect in a ’stdmod_lavaan’ Class Object

Description

Return the estimate of the standardized moderation effect in the output of stdmod_lavaan().

Usage

S3 method for class 'stdmod_lavaan'
coef(object, ...)

Arguments

object The output of stdmod_lavaan().

... Optional arguments. Ignored by the function.

Details

It just extracts and returns the element stdmod.

Value

A scalar: The estimate of the standardized moderation effect.

cond_effect 5

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

Examples

Load a test data of 500 cases
dat <- test_mod1
library(lavaan)

mod <-
"
med ~ iv + mod + iv:mod + cov1
dv ~ med + cov2
"
fit <- sem(mod, dat)
coef(fit)

Compute the standardized moderation effect
out_noboot <- stdmod_lavaan(fit = fit,

x = "iv",
y = "med",
w = "mod",
x_w = "iv:mod")

coef(out_noboot)

Compute the standardized moderation effect and
its confidence interval based on nonparametric bootstrapping
Fit the model with bootstrap confidence intervals
At least 2000 bootstrap samples should be used
in real research. 50 is used here only for
illustration.
fit <- sem(mod, dat, se = "boot", bootstrap = 50,

iseed = 89574)
out_boot <- stdmod_lavaan(fit = fit,

x = "iv",
y = "med",
w = "mod",
x_w = "iv:mod",
boot_ci = TRUE)

coef(out_boot)

cond_effect Conditional Effects

Description

Compute the conditional effects in a moderated regression model.

https://orcid.org/0000-0002-9871-9448

6 cond_effect

Usage

cond_effect(
output,
x = NULL,
w = NULL,
w_method = c("sd", "percentile"),
w_percentiles = c(0.16, 0.5, 0.84),
w_sd_to_percentiles = NA,
w_from_mean_in_sd = 1,
w_values = NULL

)

cond_effect_boot(
output,
x = NULL,
w = NULL,
...,
conf = 0.95,
nboot = 100,
boot_args = NULL,
save_boot_est = TRUE,
full_output = FALSE,
do_boot = TRUE

)

Arguments

output The output from stats::lm(). It can also accept the output from std_selected()
or std_selected_boot().

x The focal variable (independent variable), that is, the variable with its effect
on the outcome variable (dependent) being moderated. It must be a numeric
variable.

w The moderator. Both numeric variables and categorical variables (character or
factor) are supported.

w_method How to define "low", "medium", and "high" for the moderator levels. Default
is in terms of mean and standard deviation (SD) of the moderator, "sd": "low",
"medium", and "high" are one SD below mean, mean, and one SD above mean,
respectively. If equal to "percentile", then percentiles of the moderator in the
dataset are used: "low", "medium", and "high" are 16th, 50th (median), and 84th
percentiles, respectively. Ignored if w is categorical.

w_percentiles If w_method is "percentile", then this argument specifies the three percentiles
to be used, divided by 100. It must be a vector of two numbers. The default
is c(.16, .50, .84), the 16th, 50th, and 84th percentiles, which corresponds
approximately to one SD below and above mean in a normal distribution, re-
spectively. Ignored if w is categorical.

w_sd_to_percentiles

If w_method is "percentile" and this argument is set to a number, this number

cond_effect 7

will be used to to determine the percentiles to be used. The lower percentile is
the percentile in a normal distribution that is w_sd_to_percentiles SD below
the mean. The upper percentile is the percentile in a normal distribution that is
w_sd_to_percentiles SD above the mean. Therefore, if w_sd_to_percentiles
is set to 1, then the lower and upper percentiles are 16th and 84th, respectively.
Default is NA.

w_from_mean_in_sd

How many SD from mean is used to define "low" and "high" for the moderator.
Default is 1. Ignored if w is categorical.

w_values The values of w to be used. Default is NULL. If a numeric vector is supplied,
these values will be used to compute the conditional effects. Other arguments on
generating levels are ignored. Note that, if w has been standardized or centered,
these values are for the standardized or centered w. The values will always be
sorted. This argument is ignored if w is categorical.

... Arguments to be passed to cond_effect().

conf The level of confidence for the confidence interval. Default is .95, to get 95%
confidence intervals.

nboot The number of bootstrap samples. Default is 100.

boot_args A named list of arguments to be passed to boot::boot(). Default is NULL.

save_boot_est If TRUE, the default, the bootstrap estimates will be saved in the element boot_est
of the output.

full_output Whether the full output from boot::boot() will be returned. Default is FALSE.
If TRUE, the full output from boot::boot() will be saved in the element boot_out
of the output.

do_boot Whether bootstrapping confidence intervals will be formed. Default is TRUE. If
FALSE, all arguments related to bootstrapping will be ignored.

Details

cond_effect() uses the centering approach to find the conditional effect of the focal variable. For
each level of the moderator, the value for this level is subtracted from the moderator scores, and
the model is fitted to the modified data. The coefficient of the focal variable is then the conditional
effect of the focal variable when the moderator’s score is equal this value.

cond_effect_boot() function is a wrapper of cond_effect(). It calls cond_effect() once for
each bootstrap sample, and then computes the nonparametric bootstrap percentile confidence inter-
vals (Cheung, Cheung, Lau, Hui, & Vong, 2022). If the output object is the output of std_selected()
or std_selected_boot(), in which mean-centering and/or standardization have been conducted,
they will be repeated in each bootstrap sample. Therefore, like std_selected_boot(), it can
be used for form nonparametric bootstrap confidence intervals for standardized effects, though
cond_effect_boot() does this for the standardized conditional effects.

This function ignores bootstrapping done by std_selected_boot(). It will do its own bootstrap-
ping.

If do_boot is FALSE, then the object it returns is identical to that by cond_effect().

This function intentionally does not have an argument for setting the seed for random number. Users
are recommended to set the seed, e.g., using set.seed() before calling it, to ensure reproducibility.

8 cond_effect

Value

cond_effect() returns a data-frame-like object of the conditional effects. The class is cond_effect
and the print method will print additional information of the conditional effects. Additional infor-
mation is stored in the following attributes:

• call: The original call.

• output: The output object, such as the output from lm().

• x, y, and w: The three variables used to compute the conditional effects: focal variable (x),
outcome variable (y), and the moderator (w).

• w_method: The method used to determine the values of the moderator at the selected levels.

• w_percentiles The percentiles to use if w_method = "percentile".

• w_sd_to_percentiles: If not equal to NA, this is a scalar, the number of standard devia-
tion from the mean used to determine the percentiles for the "low" and "high" levels of the
moderator.

• w_from_mean_in_sd: The number of SD above or below the mean, for determining the "low"
and "high" levels of the moderator if w_method is "sd".

• w_empirical_percentiles: The actual percentile levels in the dataset for the selected levels
of the moderator. A numeric vector.

• w_empirical_z: The actual distance from the mean, in SD, of each selected level of the
moderator. A numeric vector.

• y_standardized, x_standardized, and w_standardized: Each of them is a logical scalar,
indicating whether the outcome variable, focal variable, and moderator are standardized.

cond_effect_boot() also returns a data-frame-like object of the conditional effects of the class
cond_effect, with additional information from the bootstrapping stored in these attributes:

• boot_ci: A data frame of the bootstrap confidence intervals of the conditional effects.

• nboot: The number of bootstrap samples requested.

• conf: The level of confidence, in proportion.

• boot_est: A matrix of the bootstrap estimates of the conditional effects. The number of rows
equal to nboot, and the number of columns equal to the number of levels of the moderator.

• cond_effect_boot_call: The call to cond_effect_boot().

• boot_out: If available, the original output from boot::boot().

Functions

• cond_effect_boot(): A wrapper of cond_effect() that forms nonparametric bootstrap
confidence intervals.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

https://orcid.org/0000-0002-9871-9448

confint.cond_effect 9

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)
cond_effect(lm_raw, x = iv, w = mod)

lm_std <- std_selected(lm_raw, to_standardize = ~ iv + mod)
cond_effect(lm_std, x = iv, w = mod)

Categorical moderator
lm_cat <- lm(dv ~ iv*cat1 + v1, dat)
summary(lm_cat)
cond_effect(lm_cat, x = iv, w = cat1)

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)

lm_std <- std_selected(lm_raw, to_standardize = ~ iv + mod)
cond_effect(lm_std, x = iv, w = mod)

Form nonparametric bootstrap confidence intervals
Use 2000 or even 5000 for nboot in real research
out <- cond_effect_boot(lm_std, x = iv, w = mod, nboot = 50)
out

confint.cond_effect Confidence Intervals for a ’cond_effect’ Class Object

Description

Return the confidence intervals of estimates conditional effect in the output of cond_effect() or
cond_effect_boot().

Usage

S3 method for class 'cond_effect'
confint(object, parm, level = 0.95, type, ...)

10 confint.cond_effect

Arguments

object The output of cond_effect() or cond_effect_boot().

parm Ignored by this function. The confidence intervals for all available levels will be
returned.

level The level of confidence. For the confidence intervals returned by lm(), default
is .95, i.e., 95%. For the bootstrap percentile confidence intervals, default is the
level used in calling cond_effect_boot().

type The type of the confidence intervals. If est to "lm", returns the confidence in-
terval given by the confint() method of lm(). If set to "boot", the bootstrap
percentile confidence intervals are returned. Default is "boot" if bootstrap esti-
mates are stored in object, and "lm" if bootstrap estimates are not stored.

... Additional arguments. Ignored.

Details

If bootstrapping is used to form the confidence interval by cond_effect_boot(), users can re-
quest the percentile confidence intervals of the bootstrap estimates. This method does not do the
bootstrapping itself.

Value

A matrix of the confidence intervals.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)
out <- cond_effect(lm_raw, x = iv, w = mod)
print(out, t_ci = TRUE)
confint(out)

lm_std <- std_selected(lm_raw, to_center = ~ iv + mod, to_scale = ~ iv + mod)
Alternative: use to_standardize as a shortcut
lm_std <- std_selected(lm_raw, to_standardize = ~ iv + mod)
out <- cond_effect(lm_std, x = iv, w = mod)
print(out, t_ci = TRUE)
confint(out)

Categorical moderator
lm_cat <- lm(dv ~ iv*cat1 + v1, dat)

https://orcid.org/0000-0002-9871-9448

confint.stdmod_lavaan 11

summary(lm_cat)
out <- cond_effect(lm_cat, x = iv, w = cat1)
print(out, t_ci = TRUE)
confint(out)

confint.stdmod_lavaan Confidence Intervals for a ’stdmod_lavaan’ Class Object

Description

Return the confidence interval of the standardized moderation effect in the output of stdmod_lavaan().

Usage

S3 method for class 'stdmod_lavaan'
confint(object, parm, level = 0.95, ...)

Arguments

object The output of stdmod_lavaan().

parm Ignored. Always return the bootstrap confidence interval of the standardized
moderation effect.

level The level of confidence, default is .95, returning the 95% confidence interval.

... Additional arguments. Ignored by the function.

Details

If bootstrapping is used to form the confidence interval by stdmod_lavaan(), users can request the
percentile confidence interval of using the stored bootstrap estimate.

Value

A one-row matrix of the confidence intervals.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

Examples

Load a test data of 500 cases
dat <- test_mod1
library(lavaan)

mod <-
"
med ~ iv + mod + iv:mod + cov1

https://orcid.org/0000-0002-9871-9448

12 confint.std_selected

dv ~ med + cov2
"
fit <- sem(mod, dat)
coef(fit)

Compute the standardized moderation effect and
its confidence interval based on nonparametric bootstrapping
Fit the model with bootstrap confidence intervals
At least 2000 bootstrap samples should be used
in real research. 50 is used here only for
illustration.
fit <- sem(mod, dat, se = "boot", bootstrap = 50,

iseed = 89574)
out_boot <- stdmod_lavaan(fit = fit,

x = "iv",
y = "med",
w = "mod",
x_w = "iv:mod",
boot_ci = TRUE)

confint(out_boot)

confint.std_selected Confidence Intervals for a ’std_selected’ Class Object

Description

Return the confidence intervals of estimates in the output of std_selected() or std_selected_boot().

Usage

S3 method for class 'std_selected'
confint(object, parm, level = 0.95, type, ...)

Arguments

object The output of std_selected() or std_selected_boot().
parm The parameters (coefficients) for which confidence intervals should be returned.

If missing, the confidence intervals of all parameters will be returned.
level The level of confidence. For the confidence intervals returned by lm(), de-

fault is .95, i.e., 95%. For the bootstrap percentile confidence intervals, default
is the level used in calling std_selected_boot(). If a level different from
that in the original call is specified, full_output needs to be set in the call to
std_selected_boot() such that the original bootstrapping output is stored.

type The type of the confidence intervals. If est to "lm", returns the confidence in-
terval given by the confint() method of lm(). If set to "boot", the bootstrap
percentile confidence intervals are returned. Default is "boot" if bootstrap esti-
mates are stored in object, and "lm" if bootstrap estimates are not stored.

... Arguments to be passed to summary.lm().

confint.std_selected 13

Details

If bootstrapping is used to form the confidence interval by std_selected_boot(), users can re-
quest the percentile confidence intervals of the bootstrap estimates. This method does not do the
bootstrapping itself.

Value

A matrix of the confidence intervals.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)

Standardize all variables except for categorical variables.
Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_center = ~ .,

to_scale = ~ .)
Alternative: use to_standardize as a shortcut
lm_std <- std_selected(lm_raw, to_standardize = ~ .)
summary(lm_std)

confint(lm_std)

Use to_standardize as a shortcut
lm_std2 <- std_selected(lm_raw, to_standardize = ~ .)
The results are the same
confint(lm_std)
confint(lm_std2)
all.equal(confint(lm_std), confint(lm_std2))

With bootstrapping
nboot = 100 just for illustration. nboot >= 2000 should be used in read
research.
set.seed(89572)
lm_std_boot <- std_selected_boot(lm_raw, to_scale = ~ .,

to_center = ~ .,
nboot = 100)

summary(lm_std_boot)

Bootstrap percentile intervals, default when bootstrap was conduced

confint(lm_std_boot)

https://orcid.org/0000-0002-9871-9448

14 plotmod

Force OLS confidence intervals

confint(lm_std_boot, type = "lm")

Use to_standardize as a shortcut
set.seed(89572)
lm_std_boot2 <- std_selected_boot(lm_raw, to_standardize = ~ .,

nboot = 100)
The results are the same
confint(lm_std_boot)
confint(lm_std_boot2)
all.equal(confint(lm_std_boot), confint(lm_std_boot2))

plotmod Moderation Effect Plot

Description

Plot the moderation effect in a regression model

Usage

plotmod(
output,
x,
w,
x_label,
w_label,
y_label,
title,
digits = 3,
x_from_mean_in_sd = 1,
w_from_mean_in_sd = 1,
w_method = c("sd", "percentile"),
w_percentiles = c(0.16, 0.84),
x_method = c("sd", "percentile"),
x_percentiles = c(0.16, 0.84),
w_sd_to_percentiles = NA,
x_sd_to_percentiles = NA,
w_values = NULL,
note_standardized = TRUE,
no_title = FALSE,
line_width = 1,
point_size = 5,
graph_type = c("default", "tumble")

)

plotmod 15

Arguments

output The output of stats::lm(), std_selected(), or std_selected_boot().

x The name of the focal variable (x-axis) in ‘output“. It can be the name of the
variable, with or without quotes. Currently only numeric variables are sup-
ported.

w The name of the moderator in output. It can be the name of the variable, with
or without quotes.

x_label The label for the X-axis. Default is the value of x.

w_label The label for the legend for the lines. Default is the value ofw.

y_label The label for the Y-axis. Default is the name of the response variable in the
model.

title The title of the graph. If not supplied, it will be generated from the variable
names or labels (in x_label, y_label, and w_label). If "", no title will be
printed. This can be used when the plot is for manuscript submission and figures
are required to have no titles.

digits Number of decimal places to print. Default is 3.
x_from_mean_in_sd

How many SD from mean is used to define "low" and "high" for the focal vari-
able. Default is 1.

w_from_mean_in_sd

How many SD from mean is used to define "low" and "high" for the moderator.
Default is 1. Ignored if w is categorical.

w_method How to define "high" and "low" for the moderator levels. Default is in terms
of the standard deviation of the moderator, "sd". If equal to "percentile",
then the percentiles of the moderator in the dataset are used. Ignored if w is
categorical.

w_percentiles If w_method is "percentile", then this argument specifies the two percentiles
to be used, divided by 100. It must be a vector of two numbers. The default is
c(.16, .84), the 16th and 84th percentiles, which corresponds approximately
to one SD below and above mean for a normal distribution, respectively. Ignored
if w is categorical.

x_method How to define "high" and "low" for the focal variable levels. Default is in terms
of the standard deviation of the focal variable, "sd". If equal to "percentile",
then the percentiles of the focal variable in the dataset is used.

x_percentiles If x_method is "percentile", then this argument specifies the two percentiles
to be used, divided by 100. It must be a vector of two numbers. The default is
c(.16, .84), the 16th and 84th percentiles, which corresponds approximately
to one SD below and above mean for a normal distribution, respectively.

w_sd_to_percentiles

If w_method is "percentile" and this argument is set to a number, this number
will be used to determine the percentiles to be used. The lower percentile is
the percentile in a normal distribution that is w_sd_to_percentiles SD below
the mean. The upper percentile is the percentile in a normal distribution that is
w_sd_to_percentiles SD above the mean. Therefore, if w_sd_to_percentiles

16 plotmod

is set to 1, then the lower and upper percentiles are 16th and 84th, respectively.
Default is NA.

x_sd_to_percentiles

If x_method is "percentile" and this argument is set to a number, this number
will be used to determine the percentiles to be used. The lower percentile is
the percentile in a normal distribution that is x_sd_to_percentiles SD below
the mean. The upper percentile is the percentile in a normal distribution that is
x_sd_to_percentiles SD above the mean. Therefore, if x_sd_to_percentiles
is set to 1, then the lower and upper percentiles are 16th and 84th, respectively.
Default is NA.

w_values The values of w to be used. Default is NULL. If a numeric vector is supplied,
these values will be used to compute the conditional effects. Other arguments on
generating levels are ignored. Note that, if w has been standardized or centered,
these values are for the standardized or centered w. The values will always be
sorted. This argument is ignored if w is categorical.

note_standardized

If TRUE, will check whether a variable has SD nearly equal to one. If yes, will
report this in the plot. Default is TRUE.

no_title If TRUE, title will be suppressed. Default is FALSE.

line_width The width of the lines as used in ggplot2::geom_segment(). Default is 1.

point_size The size of the points as used in ggplot2::geom_point(). Default is 5.

graph_type If "default", the typical line-graph with equal end-points will be plotted. If
"tubmle", then the tumble graph proposed by Bodner (2016) will be plotted.
Default is "default".

Details

This function generate a basic ggplot2 graph typically found in psychology manuscripts. It tries to
check whether one or more variables are standardized, and report this in the plot if required.

This function only has features for typical plots of moderation effects. It is not intended to be a
flexible tool for a fine control on the plots.

Value

A ggplot2 graph. Plotted if not assigned to a name. It can be further modified like a usual ggplot2
graph.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

References

Bodner, T. E. (2016). Tumble graphs: Avoiding misleading end point extrapolation when graphing
interactions from a moderated multiple regression analysis. Journal of Educational and Behavioral
Statistics, 41(6), 593-604. doi:10.3102/1076998616657080

https://orcid.org/0000-0002-9871-9448
https://doi.org/10.3102/1076998616657080

print.cond_effect 17

Examples

Do a moderated regression by lm
lm_out <- lm(sleep_duration ~ age + gender + emotional_stability*conscientiousness, sleep_emo_con)
plotmod(lm_out,

x = emotional_stability,
w = conscientiousness,
x_label = "Emotional Stability",
w_label = "Conscientiousness",
y_label = "Sleep Duration")

Standardize all variables except for categorical variables
Alternative: use to_standardize as a shortcut
lm_std <- std_selected(lm_out,
to_standardize = ~ .)
lm_std <- std_selected(lm_out,

to_scale = ~ .,
to_center = ~ .)

plotmod(lm_std,
x = emotional_stability,
w = conscientiousness,
x_label = "Emotional Stability",
w_label = "Conscientiousness",
y_label = "Sleep Duration")

Tumble Graph
plotmod(lm_std,

x = emotional_stability,
w = conscientiousness,
x_label = "Emotional Stability",
w_label = "Conscientiousness",
y_label = "Sleep Duration",
graph_type = "tumble")

print.cond_effect Print a ’cond_effect’ Class Object

Description

Print the output of cond_effect() or cond_effect_boot().

Usage

S3 method for class 'cond_effect'
print(
x,
nd = 3,
nd_stat = 3,
nd_p = 3,

18 print.cond_effect

title = TRUE,
model = TRUE,
level_info = TRUE,
standardized = TRUE,
boot_info = TRUE,
table_only = FALSE,
t_ci = FALSE,
t_ci_level = 0.95,
...

)

Arguments

x The output of cond_effect() or cond_effect_boot().

nd The number of digits for the variables.

nd_stat The number of digits for test statistics (e.g., t).

nd_p The number of digits for p-values.

title If TRUE, print a title. Default is TRUE.

model If TRUE, print the regression model. Default is TRUE.

level_info If TRUE, print information for interpreting the levels of the moderator, such as
the values of the levels and distance from the mean. Default is TRUE.

standardized If TRUE and one or more variables are standardized, report it. Default is TRUE.‘

boot_info If TRUE and bootstrap estimates are in x, print information about the bootstrap-
ping, such as the number of bootstrap samples. Default is TRUE.

table_only If TRUE, will suppress of other elements except for the table of conditional ef-
fects. Override arguments such as title, model, and level_info.

t_ci If TRUE, will print the confidence intervals based on t statistics. These confidence
intervals should not be used if some variables are standardized.

t_ci_level The level of confidence of the confidence intervals based on t statistics. Default
is .95.

... Additional arguments. Ignored by this function.

Value

x is returned invisibility.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

https://orcid.org/0000-0002-9871-9448

print.stdmod_lavaan 19

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)

cond_effect(lm_raw, x = iv, w = mod)

lm_std <- std_selected(lm_raw, to_scale = ~ iv + mod,
to_center = ~ iv + mod)

cond_effect(lm_std, x = iv, w = mod)

print.stdmod_lavaan Print a ’stdmod_lavaan’ Class Object

Description

Print the output of stdmod_lavaan().

Usage

S3 method for class 'stdmod_lavaan'
print(x, conf = 0.95, nd = 3, ...)

Arguments

x The output of stdmod_lavaan().

conf If nonparametric bootstrapping has been conducted by stdmod_lavaan(), this
is the level of confidence in proportion (.95 denotes 95%), of the confidence
interval. Default is .95.

nd The number of digits to be printed.

... Optional arguments. Ignored.

Value

x is returned invisibly.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

Examples

Load a test data of 500 cases

dat <- test_mod1
library(lavaan)

mod <-

https://orcid.org/0000-0002-9871-9448

20 print.std_selected

"
med ~ iv + mod + iv:mod + cov1
dv ~ med + cov2
"
fit <- sem(mod, dat)
coef(fit)

Compute the standardized moderation effect
out_noboot <- stdmod_lavaan(fit = fit,

x = "iv",
y = "med",
w = "mod",
x_w = "iv:mod")

out_noboot

Compute the standardized moderation effect and
its percentile confidence interval based on nonparametric bootstrapping
Fit the model with bootstrap confidence intervals
At least 2000 bootstrap samples should be used
in real research. 50 is used here only for
illustration.
fit <- sem(mod, dat, se = "boot", bootstrap = 50,

iseed = 89574)
out_boot <- stdmod_lavaan(fit = fit,

x = "iv",
y = "med",
w = "mod",
x_w = "iv:mod",
boot_ci = TRUE)

out_boot

print.std_selected Print Basic Information of a ’std_selected’ Class Object

Description

Provide information of centering and scaling, along with basic model information printed by the
print() method of lm().

Usage

S3 method for class 'std_selected'
print(x, ...)

Arguments

x The output of std_selected() or std_selected_boot().
... Arguments to be passed to print() method of lm().

print.summary.std_selected 21

Value

x is returned invisibly.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)

Standardize all variables except for categorical variables.
Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_scale = ~ .,

to_center = ~ .)
lm_std

With bootstrapping
nboot = 100 just for illustration. nboot >= 2000 should be used in read
research.
lm_std_boot <- std_selected_boot(lm_raw, to_scale = ~ .,

to_center = ~ .,
nboot = 100)

lm_std_boot

print.summary.std_selected

Print the Summary of a ’std_selected’ Class Object

Description

Print the summary generated by summary() on the output of std_selected() or std_selected_boot().

Usage

S3 method for class 'summary.std_selected'
print(
x,
...,
est_digits = 4,
t_digits = 4,
pvalue_less_than = 0.001,

https://orcid.org/0000-0002-9871-9448

22 print.summary.std_selected

default_style = FALSE
)

Arguments

x The output of summary().

... Arguments to be passed to summary().

est_digits The number of digits after the decimal to be displayed for the coefficient esti-
mates, their standard errors, and bootstrap confidence intervals (if present). Note
that the values will be rounded to this number of digits before printing. If all dig-
its at this position are zero for all values, the values may be displayed with fewer
digits. Note that the coefficient table is printed by stats::printCoefmat(). If
some numbers are vary large, the number of digits after the decimal may be
smaller than est_digits due to a limit on the column width. This value also
determines the number of digits for displayed R-squared if default_style is
FALSE. Default if 4.

t_digits The number of digits after the decimal to be displayed for the t statistic (in the
column "t value"). This value also determines the number of digits for the F
statistic for the R-squared if default_style is FALSE. Default is 4.

pvalue_less_than

If a p-value is less than this value, it will be displayed with "<(this value)".
For example, if pvalue_less_than is .001, the default, p-values less than .001
will be displayed as <.001. This value also determines the printout of the p-
value of the F statistic if default_style is FALSE. (This argument does what
eps.Pvalue does in stats::printCoefmat().)

default_style Logical. If FALSE, the default, R-squared and F statistic will be displayed in a
more readable style. If TRUE, then the default style in the printout of the summary
of lm() output will be used.

Value

x is returned invisibly.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)

Standardize all variables except for categorical variables.
Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_scale = ~ .,

https://orcid.org/0000-0002-9871-9448

sleep_emo_con 23

to_center = ~ .)
summary(lm_std)

With bootstrapping
nboot = 100 just for illustration. nboot >= 2000 should be used in read
research.
lm_std_boot <- std_selected_boot(lm_raw, to_scale = ~ .,

to_center = ~ .,
nboot = 100)

summary(lm_std_boot)

sleep_emo_con Sample Dataset: Predicting Sleep Duration

Description

A random subset from a real dataset. For illustration.

Usage

sleep_emo_con

Format

A data frame with 500 rows and six variables:

case_id Case ID, integer

sleep_duration Sleep duration in hours

conscientiousness Conscientiousness score, continuous

emotional_stability Emotional stability score, continuous

age Age in years

gender Gender, string, "female" or "male"

stdmod Standardized Moderation Effect Given an ’lm’ Output

Description

Compute the standardized moderation effect in a moderated regression model.

24 stdmod

Usage

stdmod(
lm_out,
x = NULL,
w = NULL,
y = NULL,
x_rescale = TRUE,
w_rescale = TRUE,
y_rescale = TRUE

)

stdmod_boot(
lm_out,
...,
nboot = 100,
conf = 0.95,
boot_args = NULL,
full_output = FALSE

)

Arguments

lm_out The output from lm().

x The focal variable, that is, the variable with its effect being moderated. If sup-
plied, its standard deviation will be used for rescaling. Also called the indepen-
dent variable in some models. Default is NULL.

w The moderator. If supplied, its standard deviation will be used for rescaling.
Default is NULL.

y The outcome variable (dependent variable) . If supplied, its standard deviation
will be used for rescaling. Default is NULL.

x_rescale If TRUE, will rescale x by its standard deviation. Default is TRUE.

w_rescale If TRUE, will rescale w by its standard deviation. Default is TRUE.

y_rescale If TRUE, will rescale y by its standard deviation. Default is TRUE.

... Parameters to be passed to stdmod().

nboot The number of bootstrap samples. Default is 100.

conf The level of confidence for the confidence interval. Default is .95.

boot_args A named list of arguments to be passed to boot::boot(). Default is NULL.

full_output Whether the full output from boot::boot() is returned. Default is FALSE.

Details

Two more general functions, std_selected() and std_selected_boot(), have been developed
and can do what these functions do and more. Users are recommended to use them instead of
stdmod() and stdmod_boot(). These two functions will not be updated in the near future.

stdmod 25

Nevertheless, if computing the standardized moderation effect and forming its nonparametric boot-
strap interval are all required, then these functions can still be used.

stdmod() computes the standardized moderation effect given an lm() output using the formula
from Cheung, Cheung, Lau, Hui, and Vong (2022). Users specify the moderator, the focal variable
(the variable with its effect on the outcome variable moderated), the outcome variable (dependent
variable) , and the corresponding standardized moderation effect. Users can also select which vari-
able(s) will be standardized.

stdmod_boot() is a wrapper of stdmod(). It computes the nonparametric bootstrap confidence
interval of the standardized moderation effect, as suggested by Cheung, Cheung, Lau, Hui, and
Vong (2022), given the output of lm()

Percentile interval from boot::boot.ci() is returned by this function. If other types of confidence
intervals are desired, set full_output = TRUE and use boot::boot.ci() on the element boot_out
in the output of this function.

Value

stdmod() returns a scalar: The standardized moderation effect.

stdmod_boot() returns a list with two elements. The element ci is a numeric vector of the boot-
strap confidence interval. The element boot_out, if not NA, is the output of boot::boot(), which
is used to do the bootstrapping.

Functions

• stdmod(): The base function for computing standardized moderation effect

• stdmod_boot(): A wrapper of stdmod() that computes the nonparametric bootstrap confi-
dence interval of the standardized moderation effect.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

References

Cheung, S. F., Cheung, S.-H., Lau, E. Y. Y., Hui, C. H., & Vong, W. N. (2022) Improving an
old way to measure moderation effect in standardized units. Health Psychology, 41(7), 502-505.
doi:10.1037/hea0001188

Examples

Load a test data of 500 cases

dat <- test_x_1_w_1_v_2_n_500

Do regression as usual:
lm_raw <- lm(dv ~ iv*mod + v1 + v2, dat)
summary(lm_raw)

The standard deviations of iv, dv, and mod:
sds <- apply(dat, 2, sd)

https://orcid.org/0000-0002-9871-9448
https://doi.org/10.1037/hea0001188

26 stdmod_lavaan

sds

Compute the standardized moderation effect:
stdmod_xyw <- stdmod(lm_raw, x = iv, y = dv, w = mod)
stdmod_xyw
By default, all three variables will be standardized.

Check against self-computed standardized moderation effect:
coef(lm_raw)["iv:mod"] * sds["iv"] * sds["mod"] / sds["dv"]

Standardize only the iv, i.e., do not standardized dv and the moderator:
stdmod_x <- stdmod(lm_raw, x = iv, y = dv, w = mod,

x_rescale = TRUE, y_rescale = FALSE, w_rescale = FALSE)
stdmod_x
Check against self-computed moderation effect with only iv standardized:
coef(lm_raw)["iv:mod"] * sds["iv"]

dat <- test_x_1_w_1_v_2_n_500
Do regression as usual:
lm_raw <- lm(dv ~ iv*mod + v1 + v2, dat)

Compute the standardized moderation effect.
Form its confidence interval by nonparametric bootstrapping.
set.seed(85740917)
stdmod_xyw_boot <- stdmod_boot(lm_raw, x = iv, w = mod, y = dv, nboot = 100)
In real analysis, nboot should be at least 2000.

Print the ci
stdmod_xyw_boot$ci

Repeat the analysis but keep the results from boot:
set.seed(85740917)
stdmod_xyw_boot <- stdmod_boot(lm_raw, x = iv, w = mod, y = dv,

nboot = 200, full_output = TRUE)
In real analysis, nboot should be at least 2000.

Print the 95% percentile confidence interval
stdmod_xyw_boot$ci

stdmod_lavaan Standardized Moderation Effect and Its Bootstrap CI in ’lavaan’

Description

Compute the standardized moderation effect in a structural equation model fitted by lavaan::lavaan()
or its wrappers and form the nonparametric bootstrap confidence interval.

stdmod_lavaan 27

Usage

stdmod_lavaan(
fit,
x,
y,
w,
x_w,
standardized_x = TRUE,
standardized_y = TRUE,
standardized_w = TRUE,
boot_ci = FALSE,
boot_out = NULL,
R = 100,
conf = 0.95,
use_old_version = FALSE,
...

)

Arguments

fit The SEM output by lavaan::lavaan() or its wrappers.
x The name of the focal variable in the model, the variable with its effect on the

outcome variable being moderated.
y The name of the outcome variable (dependent variable) in the model.
w The name of the moderator in the model.
x_w The name of the product term (x * w) in the model. It can be the variable

generated by the colon operator, e.g., "x:w", which is only in the model and not
in the original data set.

standardized_x If TRUE, the default, x is standardized when computing the standardized moder-
ation effect.

standardized_y If TRUE, the default, y is standardized when computing the standardized moder-
ation effect.

standardized_w If TRUE, the default, w is standardized when computing the standardized moder-
ation effect.

boot_ci Boolean. Whether nonparametric bootstrapping will be conducted. Default is
FALSE.

boot_out If set to the output of manymome::do_boot(), the stored bootstrap estimates will
be retrieved to form the bootstrap confidence interval. If set, bootstrap estimates
stored in fit, if any, will not be used. Default is NULL.

R (Not used in the current version. Used when use_old_version is set to TRUE.)
The number of nonparametric bootstrapping samples. Default is 100. Set this to
at least 2000 in actual use.

conf The level of confidence. Default is .95, i.e., 95%.
use_old_version

If set to TRUE, it will use the bootstrapping method used in 0.2.7.4 or before.
Included only for reproducing previous results if necessary. Default is FALSE.

28 stdmod_lavaan

... (Not used in the current version. Used when use_old_version is set to TRUE.)
Optional arguments to be passed to boot::boot(). Parallel processing can be
used by adding the appropriate arguments in boot::boot().

Details

Important Notes:
Starting from Version 0.2.7.5, of stdmod_lavaan() adopts an approach to bootstrapping different
from that in the previous versions (0.2.7.4 and before), yielding bootstrapping results different
from those in previous versions (for reasons explained later).
To reproduce results from the older version of this function, set use_old_version to TRUE.

How it works:
stdmod_lavaan() accepts a lavaan::lavaan object, the structural equation model output returned
by lavaan::lavaan() and its wrappers (e.g, lavaan::sem()) and computes the standardized
moderation effect using the formula in the appendix of Cheung, Cheung, Lau, Hui, and Vong
(2022).
The standard deviations of the focal variable (the variable with its effect on the outcome variable
being moderated), moderator, and outcome variable (dependent variable) are computed from the
implied covariance matrix returned by lavaan::lavInspect(). Therefore, models fitted to data
sets with missing data (e.g., with missing = "fiml") are also supported.
Partial standardization can also be requested. For example, standardization can be requested for
only the focal variable and the outcome variable.
There are two ways to request nonparametric bootstrap confidence interval. First, the model is
fitted with se = "boot" or se = "bootstrap" in lavaan. The stored bootstrap estimates will
then be retrieved automatically to compute the standardized moderation effect. This is the most
efficient approach if the bootstrap confidence intervals are also needed for other parameters in the
model. Bootstrapping needs to be done only once.
Second, bootstrap estimates can be generated by manymome::do_boot(). The output is then
supplied through the argument boot_out. Bootstrapping also only needs to be done once. This
approach is appropriate when bootstrapping confidence intervals are not needed for other model
parameters, or another type of confidence interval is needed when fitting the model. Please refer
to the help page of manymome::do_boot() on how to use this function.
In both approaches, the standard deviations are also computed in each bootstrap samples. This
ensures that the sampling variability of the standard deviations is also taken into account in com-
puting the bootstrap confidence interval of the standardized moderation effect.

Note on the differences between the current version (Version 0.2.7.5 or later) and previous
versions (0.2.7.4 and before):
In older versions, stdmod_lavaan() does not allow for partial standardization. Moreover, it uses
boot::boot() to do the bootstrapping. Even with the same seed, the results from boot::boot()
are not identical to those of lavaan with se = "boot" because they differ in the way the indices
of resampling are generated. Both approaches are correct, They just use the generated random
numbers differently. To have results consistent with those from lavaan, the current version of
stdmod_lavaan() adopts a resampling algorithm identical to that of lavaan. Last, in older ver-
sions, stdmod_lavaan() does bootstrapping every time it is called. This is inefficient.
The bootstrapping results in the current version are not identical to those in older versions due to
the use of different resampling algorithms, To reproduce previous results, set use_old_version
to TRUE

stdmod_lavaan 29

Value

A list of class stdmod_lavaan with these elements:

• stdmod: The standardized moderation effect.

• ci: The nonparametric bootstrap confidence interval. NA if confidence interval not requested.

• boot_out: The raw output from boot::boot(). NA if confidence interval not requested.

• fit: The original fit object.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

References

Cheung, S. F., Cheung, S.-H., Lau, E. Y. Y., Hui, C. H., & Vong, W. N. (2022) Improving an
old way to measure moderation effect in standardized units. Health Psychology, 41(7), 502-505.
doi:10.1037/hea0001188

Examples

#Load a test data of 500 cases

dat <- test_mod1
library(lavaan)
mod <-
"
med ~ iv + mod + iv:mod + cov1
dv ~ med + cov2
"

fit <- sem(mod, dat)

Compute the standardized moderation effect
out_noboot <- stdmod_lavaan(fit = fit,

x = "iv",
y = "med",
w = "mod",
x_w = "iv:mod")

out_noboot

Compute the standardized moderation effect and
its percentile confidence interval using
nonparametric bootstrapping
Fit the model with bootstrap confidence intervals
At least 2000 bootstrap samples should be used
in real research. 50 is used here only for
illustration.
fit <- sem(mod, dat, se = "boot", bootstrap = 50,

iseed = 89574)
out_boot <- stdmod_lavaan(fit = fit,

x = "iv",

https://orcid.org/0000-0002-9871-9448
https://doi.org/10.1037/hea0001188

30 std_selected

y = "med",
w = "mod",
x_w = "iv:mod",
boot_ci = TRUE)

out_boot

std_selected Standardize Variables in a Regression Model

Description

Standardize, mean center, or scale by standard deviation selected variables in a regression model
and refit the model

Usage

std_selected(lm_out, to_scale = NULL, to_center = NULL, to_standardize = NULL)

std_selected_boot(
lm_out,
to_scale = NULL,
to_center = NULL,
to_standardize = NULL,
conf = 0.95,
nboot = 100,
boot_args = NULL,
save_boot_est = TRUE,
full_output = FALSE,
do_boot = TRUE

)

Arguments

lm_out The output from lm().

to_scale The terms to be rescaled by standard deviation, specified by a formula as in
lm(). For example, if the terms to be scaled are x1 and x3, use ~ x1 + x3. No
need to specify the interaction term. To scale the outcome variable, list it on
the right hand side as a predictor. Specify only the original variables. If NULL,
then no terms will be rescaled by their standard deviations. Variables that are
not numeric will be ignored. Default is NULL.

to_center The terms to be mean centered, specified by a formula as in lm(). For example,
if the terms to be centered is x1 and x3, use ~ x1 + x3. No need to specify the
interaction term. To center the outcome variable, list it on the right hand side
as a predictor. Specify only the original variables. If NULL, then no term will be
centered. Default is NULL.

std_selected 31

to_standardize The terms to be standardized, specified by a formula as in lm(). For example, if
the terms to be standardized is x1 and x3, use ~ x1 + x3. No need to specify the
interaction term. To standardize the outcome variable, list it on the right hand
side as a predictor. Specify only the original variables. This is a shortcut to
to_center and to_scale. Listing a variable in to_standardize is equivalent
to listing this variable in both to_center and to_scale. Default is NULL.

conf The level of confidence for the confidence interval. Default is .95.

nboot The number of bootstrap samples. Default is 100.

boot_args A named list of arguments to be passed to boot::boot(). Default is NULL.

save_boot_est If TRUE, the default, the bootstrap estimates will be saved in the element boot_est
of the output.

full_output Whether the full output from boot::boot() is returned. Default is FALSE. If
TRUE, the full output from boot::boot() will be saved in the element boot_out
of the output.

do_boot Whether bootstrapping confidence intervals will be formed. Default is TRUE. If
FALSE, all arguments related to bootstrapping will be ignored.

Details

std_selected() was originally developed to compute the standardized moderation effect and the
standardized coefficients for other predictors given an lm() output (Cheung, Cheung, Lau, Hui, &
Vong, 2022). It has been extended such that users can specify which variables in a regression model
are to be mean-centered and/or rescaled by their standard deviations. If the model has one or more
interaction terms, they will be formed after the transformation, yielding the correct standardized
solution for a moderated regression model. Moreover, categorical predictors will be automatically
skipped in mean-centering and rescaling.

Standardization is conducted when a variable is mean-centered and then rescaled by its standard
deviation. Therefore, if the goal is to get the standardized solution of a moderated regression, users
just instruct the function to standardize all non-categorical variables in the regression model.

std_selected_boot() is a wrapper of std_selected(). It calls std_selected() once for each
bootstrap sample, and then computes the nonparametric bootstrap percentile confidence intervals
(Cheung, Cheung, Lau, Hui, & Vong, 2022).

If do_boot is FALSE, then the object it returns is identical to that by std_selected().

This function intentionally does not have an argument for setting the seed for random number. Users
are recommended to set the seed, e.g., using set.seed() before calling it, to ensure reproducibility.

Value

The updated lm() output, with the class std_selected added. It will be treated as a usual lm()
object by most functions. These are the major additional element in the list:

• scaled_terms: If not NULL, a character vector of the variables scaled.

• centered_terms: If not NULL, a character vector of the variables mean-centered.

• scaled_by: A numeric vector of the scaling factors for all the variables in the model. The
value is 1 for terms not scaled.

32 std_selected

• centered_by: A numeric vector of the numbers used for centering for all the variables in the
model. The value is 0 for terms not centered.

• std_selected_call: The original call.

• lm_out_call: The call in lm_out.

Like std_selected(), std_selected_boot() returns the updated lm() output, with the class
std_selected added. The output of std_selected_boot() contain these additional elements in
the list:

• boot_ci: A data frame of the bootstrap confidence intervals of the regression coefficient.

• nboot: The number of bootstrap samples requested.

• conf: The level of confidence, in proportion.

• boot_est: A matrix of the bootstrap estimates of the regression coefficients. The number of
rows equal to nboot, and the number of columns equal to the number of terms in the regression
model.

• std_selected_boot_call: The call to std_selected_boot().

• boot_out: If available, the original output from boot::boot().

Functions

• std_selected(): The base function to center or scale selected variables in a regression model

• std_selected_boot(): A wrapper of std_selected() that forms nonparametric bootstrap
confidence intervals.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

References

Cheung, S. F., Cheung, S.-H., Lau, E. Y. Y., Hui, C. H., & Vong, W. N. (2022) Improving an
old way to measure moderation effect in standardized units. Health Psychology, 41(7), 502-505.
doi:10.1037/hea0001188

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500
head(dat)

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)

Mean center mod only
lm_cw <- std_selected(lm_raw, to_center = ~ mod)
summary(lm_cw)

https://orcid.org/0000-0002-9871-9448
https://doi.org/10.1037/hea0001188

std_selected 33

Mean center mod and iv
lm_cwx <- std_selected(lm_raw, to_center = ~ mod + iv)
summary(lm_cwx)

Standardize both mod and iv
lm_stdwx <- std_selected(lm_raw, to_scale = ~ mod + iv,

to_center = ~ mod + iv)
summary(lm_stdwx)

Standardize all variables except for categorical variables.
Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_scale = ~ .,

to_center = ~ .)
summary(lm_std)

Use to_standardize as a shortcut
lm_stdwx2 <- std_selected(lm_raw, to_standardize = ~ mod + iv)
The results are the same
coef(lm_stdwx)
coef(lm_stdwx2)
all.equal(coef(lm_stdwx), coef(lm_stdwx2))

dat <- test_x_1_w_1_v_1_cat1_n_500
head(dat)

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)
Standardize all variables as in std_selected above, and compute the
nonparametric bootstrapping percentile confidence intervals.
set.seed(87053)
lm_std_boot <- std_selected_boot(lm_raw,

to_scale = ~ .,
to_center = ~ .,
conf = .95,
nboot = 100)

In real analysis, nboot should be at least 2000.
summary(lm_std_boot)

Use to_standardize as a shortcut
set.seed(87053)
lm_std_boot2 <- std_selected_boot(lm_raw,

to_standardize = ~ .,
conf = .95,
nboot = 100)

The results are the same
confint(lm_std_boot)
confint(lm_std_boot2)
all.equal(confint(lm_std_boot), confint(lm_std_boot2))

34 summary.std_selected

summary.std_selected Summary Method for a ’std_selected’ Class Object

Description

Summarize the results of std_selected() or std_selected_boot().

Usage

S3 method for class 'std_selected'
summary(object, ...)

Arguments

object The output of std_selected() or std_selected_boot().

... Additional arguments. Ignored by this function.

Value

An object of class summary.std_selected, with bootstrap confidence intervals added if present in
the object. The object is a list. Its main element coefficients is similar to the coefficient table
in the summary() printout of lm(). This object is for printing summary information of the results
from std_selected() or std_selected_boot().

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)

Standardize all variables except for categorical variables.
Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_scale = ~ .,

to_center = ~ .)
summary(lm_std)

With bootstrapping
nboot = 100 just for illustration. nboot >= 2000 should be used in read
research.
lm_std_boot <- std_selected_boot(lm_raw, to_scale = ~ .,

to_center = ~ .,

https://orcid.org/0000-0002-9871-9448

test_mod1 35

nboot = 100)
summary(lm_std_boot)

test_mod1 Sample Dataset: A Path Model With A Moderator

Description

For testing. Generated from the following model.

mod <-
"
med ~ iv + mod + iv:mod + cov1
dv ~ med + cov2
"

Usage

test_mod1

Format

A data frame with 300 rows and 6 variables:

dv Dependent variable, continuous

iv Independent variable, continuous

med Mediator, continuous

mod Moderator, continuous

cov1 Covariate, continuous

cov2 Covariate, continuous

test_mod2 Sample Dataset: A Path Model With A Moderator

Description

For testing. Generated from the following model.

mod <-
"
med ~ iv + cov1
dv ~ med + mod + med:mod + cov2
"

36 test_mod3_miss

Usage

test_mod2

Format

A data frame with 300 rows and 6 variables:

dv Dependent variable, continuous

iv Independent variable, continuous

med Mediator, continuous

mod Moderator, continuous

cov1 Covariate, continuous

cov2 Covariate, continuous

test_mod3_miss Sample Dataset: A Path Model With A Moderator

Description

For testing the handling of warnings in stdmod_lavaan(). Generated from the following model.
dv has about 88% missing. A warning on missing data will be raised in some bootstrap samples.

mod <-
"
med ~ iv + mod + iv:mod + cov1
dv ~ med + cov2
"

Usage

test_mod3_miss

Format

A data frame with 500 rows and 6 variables:

dv Dependent variable, continuous

iv Independent variable, continuous

med Mediator, continuous

mod Moderator, continuous

cov1 Covariate, continuous

cov2 Covariate, continuous

test_x_1_w_1_v_1_cat1_n_500 37

test_x_1_w_1_v_1_cat1_n_500

Sample Dataset: One IV, One Moderator, Two Covariates

Description

A covariate (cat1) is categorical. For testing.

Usage

test_x_1_w_1_v_1_cat1_n_500

Format

A data frame with 500 rows and five variables:

dv Dependent variable, continuous

iv Independent variable, continuous

mod Moderator variable, continuous

v1 Covariate, continuous

cat1 Covariate, categorical (string) with three values: "gp1", "gp2", and "gp3"

test_x_1_w_1_v_1_cat1_xw_cov_n_500

Sample Dataset: One IV, One Moderator, Two Covariates

Description

The independent variable and the moderator are associated. For demonstrating the use of tumble
graph.

Usage

test_x_1_w_1_v_1_cat1_xw_cov_n_500

Format

A data frame with 500 rows and 5 variables:

dv Dependent variable, continuous

iv Independent variable, continuous

mod Moderator variable, continuous

v1 Covariate, continuous

cat1 Covariate, categorical (string) with three values, "gp1", "gp2", and "gp3"

38 test_x_1_w_1_v_2_n_500

test_x_1_w_1_v_1_cat1_xw_cov_wcat3_n_500

Sample Dataset: One IV, One 3-Category Moderator, Two Covariates

Description

The independent variable and the categorical moderator are associated. For demonstrating the use
of tumble graph.

Usage

test_x_1_w_1_v_1_cat1_xw_cov_wcat3_n_500

Format

A data frame with 500 rows and 5 variables:

dv Dependent variable, continuous
iv Independent variable, continuous
mod Moderator variable, categorical (string) with three categories, "City Alpha", "City Gamma",

and "City Beta"
v1 Covariate, continuous
cat1 Covariate, categorical (string) with three values, "gp1", "gp2", and "gp3"

test_x_1_w_1_v_2_n_500

Sample Dataset: One IV, One Moderator, Two Covariates

Description

All variables are continuous. For testing.

Usage

test_x_1_w_1_v_2_n_500

Format

A data frame with 500 rows and five variables:

dv Dependent variable, continuous
iv Independent variable, continuous
mod Moderator variable, continuous
v1 Covariate, continuous
v2 Covariate, continuous

update.std_selected 39

update.std_selected The ’update’ Method for a ’std_selected’ Class Object

Description

This should be used only to update the call to lm(), not to the call to std_selected() or std_selected_boot().

Usage

S3 method for class 'std_selected'
update(object, formula., ..., evaluate = TRUE)

Arguments

object The output of the class std_selected().

formula. Changes to the formula.

... Optional arguments to be changed.

evaluate Whether the call will be evaluated.

Details

Although supported, it is not recommended to update an analysis processed by std_selected() or
std_selected_boot(). It is recommended to call lm() again and pass the output to std_selected()
or std_selected_boot().

Value

If evaluate = TRUE, it returns the updated fitted object, otherwise, the updated call.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500
head(dat)

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)

Standardize all variables except for categorical variables.
Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_scale = ~ .,

to_center = ~ .)

https://orcid.org/0000-0002-9871-9448

40 vcov.std_selected

summary(lm_std)

Update the model
lm_std2 <- update(lm_std, . ~ . - v1)
summary(lm_std2)

vcov.std_selected The ’vcov’ Method for a ’std_selected’ Class Object

Description

Compute the variance-covariance matrix of estimates in the output of std_selected() or std_selected_boot().

Usage

S3 method for class 'std_selected'
vcov(object, type, ...)

Arguments

object The output of std_selected() or std_selected_boot().

type The type of variance-covariance matrix. If set to "lm", returns the results of the
stats::vcov() method for the output of lm(). If set to "boot", the variance-
covariance matrix of the bootstrap estimates is returned. Default depends on
object. If bootstrap estimates were stored, then the default is "boot". Other-
wise, the default is "lm".

... Arguments to be passed to stats::vcov().

Details

If bootstrapping was used to form the confidence intervals, users can request the variance-covariance
matrix of the bootstrap estimates.

Value

A matrix of the variances and covariances of the parameter estimates.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

https://orcid.org/0000-0002-9871-9448

vcov.std_selected 41

Examples

Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500
head(dat)

Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)

Standardize all variables except for categorical variables.
Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_scale = ~ .,

to_center = ~ .)

VCOV of lm output
vcov(lm_std)

Standardize all variables as in std_selected above, and compute the
nonparametric bootstrapping percentile confidence intervals.
lm_std_boot <- std_selected_boot(lm_raw,

to_scale = ~ .,
to_center = ~ .,
conf = .95,
nboot = 100)

In real analysis, nboot should be at least 2000.

VCOV of bootstrap estimates, default when bootstrap was conducted
vcov(lm_std_boot)

For OLS VCOV
vcov(lm_std_boot, type = "lm")

Index

∗ datasets
sleep_emo_con, 23
test_mod1, 35
test_mod2, 35
test_mod3_miss, 36
test_x_1_w_1_v_1_cat1_n_500, 37
test_x_1_w_1_v_1_cat1_xw_cov_n_500,

37
test_x_1_w_1_v_1_cat1_xw_cov_wcat3_n_500,

38
test_x_1_w_1_v_2_n_500, 38

add1(), 2, 3
add1.std_selected, 2

boot::boot(), 7, 24, 25, 28, 29, 31
boot::boot.ci(), 25

coef.cond_effect, 3
coef.stdmod_lavaan, 4
cond_effect, 5
cond_effect(), 3, 7–10, 17, 18
cond_effect_boot (cond_effect), 5
cond_effect_boot(), 3, 7–10, 17, 18
confint(), 10, 12
confint.cond_effect, 9
confint.std_selected, 12
confint.stdmod_lavaan, 11

ggplot2::geom_point(), 16
ggplot2::geom_segment(), 16

lavaan::lavaan, 28
lavaan::lavaan(), 26–28
lavaan::lavInspect(), 28
lavaan::sem(), 28
lm(), 3, 10, 12, 20, 22, 24, 25, 30–32, 34, 39,

40

manymome::do_boot(), 27, 28

plotmod, 14
print(), 20
print.cond_effect, 17
print.std_selected, 20
print.stdmod_lavaan, 19
print.summary.std_selected, 21

set.seed(), 7, 31
sleep_emo_con, 23
stats::lm(), 6, 15
stats::printCoefmat(), 22
stats::vcov(), 40
std_selected, 30
std_selected(), 2, 3, 6, 7, 12, 15, 20, 21, 24,

31, 32, 34, 39, 40
std_selected_boot (std_selected), 30
std_selected_boot(), 2, 3, 6, 7, 12, 13, 15,

20, 21, 24, 31, 32, 34, 39, 40
stdmod, 23
stdmod(), 24, 25
stdmod_boot (stdmod), 23
stdmod_boot(), 24, 25
stdmod_lavaan, 26
stdmod_lavaan(), 4, 11, 19, 28, 36
summary(), 21, 22, 34
summary.lm(), 12
summary.std_selected, 34

test_mod1, 35
test_mod2, 35
test_mod3_miss, 36
test_x_1_w_1_v_1_cat1_n_500, 37
test_x_1_w_1_v_1_cat1_xw_cov_n_500, 37
test_x_1_w_1_v_1_cat1_xw_cov_wcat3_n_500,

38
test_x_1_w_1_v_2_n_500, 38

update.std_selected, 39

vcov.std_selected, 40

42

	add1.std_selected
	coef.cond_effect
	coef.stdmod_lavaan
	cond_effect
	confint.cond_effect
	confint.stdmod_lavaan
	confint.std_selected
	plotmod
	print.cond_effect
	print.stdmod_lavaan
	print.std_selected
	print.summary.std_selected
	sleep_emo_con
	stdmod
	stdmod_lavaan
	std_selected
	summary.std_selected
	test_mod1
	test_mod2
	test_mod3_miss
	test_x_1_w_1_v_1_cat1_n_500
	test_x_1_w_1_v_1_cat1_xw_cov_n_500
	test_x_1_w_1_v_1_cat1_xw_cov_wcat3_n_500
	test_x_1_w_1_v_2_n_500
	update.std_selected
	vcov.std_selected
	Index

