
Package ‘sumer’
February 18, 2026

Type Package

Title Sumerian Cuneiform Text Analysis

Version 1.1.0

Description Provides functions for converting transliterated Sume-
rian texts to sign names and cuneiform characters,
creating and querying dictionaries, and analyzing the structure of
Sumerian words. Includes a built-in dictionary and supports both
forward lookup (Sumerian to English) and reverse lookup (English to
Sumerian).

License GPL-3

Encoding UTF-8

Depends R (>= 4.0.0)

Imports stringr, officer, xml2, cli, rlang, ggplot2, ragg

RoxygenNote 7.3.3

Maintainer Robin Wellmann <ro.wellmann@gmail.com>

NeedsCompilation no

Author Robin Wellmann [aut, cre]

Repository CRAN

Date/Publication 2026-02-18 13:10:02 UTC

Contents
sumer-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
as.cuneiform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
as.sign_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
convert_to_dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
grammar_probs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
look_up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
make_dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
mark_ngrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1



2 sumer-package

ngram_frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
plot_sign_grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
prior_probs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
read_dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
read_translated_text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
save_dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
sign_grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
split_sumerian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Index 33

sumer-package Tools for Working with Sumerian Cuneiform Texts

Description

Package sumer provides tools for translating and analyzing transliterated Sumerian cuneiform texts.
It converts between transliterations, canonical sign names, and cuneiform Unicode characters, in-
cludes a dictionary lookup system for translation work, and offers statistical tools for analyzing the
grammatical structure of signs in context.

Getting Started

Load the package, load a dictionary, and look up your first word:

library(sumer)

# Load the built-in dictionary
dic <- read_dictionary()

# Look up a Sumerian word
look_up("lugal", dic)

# Search for an English term
look_up("king", dic, "en")

Cuneiform Conversion

Sumerian text can be entered as transliteration (e.g. "lugal"), as sign names (e.g. "LUGAL"), or as
cuneiform Unicode characters. The following functions convert between these representations:

as.cuneiform Converts transliteration or sign names to cuneiform Unicode characters.

as.cuneiform("lugal")
as.cuneiform("d-en-lil2")

as.sign_name Converts transliteration to canonical sign names.



sumer-package 3

as.sign_name("lugal")
as.sign_name("d-en-lil2")

info Shows all available information about a sign or compound: reading, sign name, cuneiform
character, and alternative readings.

info("lugal")
info("jic-tukul")

Dictionary Lookup

The core workflow for translation: load a dictionary and look up words.

look_up Looks up a Sumerian expression in a dictionary. Forward lookup (Sumerian to translation)
shows the cuneiform form, sign names, translations with grammatical types, and entries for
individual signs and substrings. Reverse lookup searches for a term in the translations.

dic <- read_dictionary()

# Forward: Sumerian -> translation
look_up("d-suen", dic)

# Reverse: translation -> Sumerian
look_up("water", dic, "en")
look_up("Gilgamesh", dic, "en")

skeleton Generates a hierarchical translation template for a Sumerian sentence. Each word is
broken down into syllables and individual signs, ready to be annotated with translations.

skeleton("a-ma-ru ba-ur3 ra")

Text Analysis

These functions help you analyze the statistical and grammatical structure of a Sumerian text.

N-gram Analysis: ngram_frequencies finds recurring sign combinations in a text.

# Use "Enki and the World Order" as an example text
path <- system.file("extdata", "enki_and_the_world_order.txt", package = "sumer")
text <- readLines(path, encoding="UTF-8")
freq <- ngram_frequencies(text, min_freq = 6)
head(freq)

mark_ngrams puts all these sign combinations in a text in curly brackets:

text_marked <- mark_ngrams(text, freq)
cat(text_marked[1:10], sep="\n")

Find all occurences of a pattern in the annotated text:

term <- "IGI.DIB.TU"
(pattern <- mark_ngrams(term, freq))
result <- text_marked[grepl(pattern, text_marked, fixed=TRUE)]
cat(result, sep="\n")



4 sumer-package

Grammatical Analysis: Each sign in a dictionary can have one or more grammatical types (e.g.
S for noun, V for verb, A for attribute, or operators like Sx->V). The following functions analyze
how signs are used grammatically.
sign_grammar counts how often each grammatical type occurs for each sign in a string, based on
dictionary entries:

dic <- read_dictionary()
sg <- sign_grammar("a-ma-ru ba-ur3 ra", dic)
sg

For a Bayesian estimate of the statistical distribution of the grammatical types use prior_probs
and grammar_probs:

prior <- prior_probs(dic, sentence_prob = 0.25)
gp <- grammar_probs(sg, prior, dic)

plot_sign_grammar visualizes the result as a stacked bar chart showing the grammatical type
distribution for each sign in a sequence. It accepts output from either sign_grammar (raw counts)
or grammar_probs (probabilities):

plot_sign_grammar(gp)
plot_sign_grammar(gp, output_file = "grammar.png")

Creating Your Own Dictionary

You can build a dictionary from annotated translation files. These files use a pipe format where each
line starts with | and contains the sign name, grammatical type, and meaning separated by colons
(e.g. |lugal:S:king).

make_dictionary Reads a translation file and converts it to dictionary format in one step:

filename <- system.file("extdata", "text_with_translations.txt",
package = "sumer")

dictionary <- make_dictionary(filename)

This is equivalent to calling read_translated_text followed by convert_to_dictionary.

save_dictionary / read_dictionary Save a dictionary to a file and load it again later:

save_dictionary(dictionary, "my_dictionary.txt",
author = "My Name",
year = "2025",
version = "1.0")

my_dic <- read_dictionary("my_dictionary.txt")
look_up("ki", my_dic)

Author(s)

Maintainer: Robin Wellmann <ro.wellmann@gmail.com>



as.cuneiform 5

See Also

Conversion: as.cuneiform, as.sign_name, info, split_sumerian

Dictionary lookup: read_dictionary, look_up, skeleton

Text analysis: ngram_frequencies, mark_ngrams, sign_grammar, prior_probs, grammar_probs,
plot_sign_grammar

Dictionary creation: read_translated_text, convert_to_dictionary, make_dictionary, save_dictionary

as.cuneiform Convert Transliterated Sumerian Text to Cuneiform

Description

Converts transliterated Sumerian text to Unicode cuneiform characters. This is a generic function
with a method for character vectors.

Usage

as.cuneiform(x, ...)

## Default S3 method:
as.cuneiform(x, ...)

## S3 method for class 'character'
as.cuneiform(x, mapping = NULL, ...)

## S3 method for class 'cuneiform'
print(x, ...)

Arguments

x For as.cuneiform: An object to be converted to cuneiform. Currently, only
character vectors are supported.
For print.cuneiform: an object of class "cuneiform".

mapping A data frame containing the sign mapping table with columns syllables, name,
and cuneiform. If NULL (the default), the package’s internal mapping file ‘etcsl_mapping.txt’
is loaded. Only used by the character method.

... Additional arguments passed to methods.

Details

The function processes each element of the input character vector by:

1. Calling info to look up sign information for each transliterated sign.
2. Extracting the Unicode cuneiform symbols for each sign.
3. Reconstructing the cuneiform text using the original separators, but removing hyphens and

periods which are only used in transliteration to indicate sign boundaries.

The default method throws an error for unsupported input types.



6 as.sign_name

Value

as.cuneiform returns a character vector of class cuneiform with the cuneiform representation of
each input element.

print.cuneiform displays a character vector of class cuneiform.

Note

The cuneiform output requires a font that supports the Unicode Cuneiform block (U+12000 to
U+12500) to display correctly.

See Also

info for retrieving detailed sign information, split_sumerian for splitting Sumerian text into
signs, as.sign_name for converting transliterated Sumerian text intos sign names

Examples

# Convert transliterated text to cuneiform
as.cuneiform(c("na-an-jic li-ic ma","en tarah-an-na-ke4"))

# Load transliterated text from a file
file <- system.file("extdata", "transliterated-text.txt", package = "sumer")
x <- readLines(file)
cat(x, sep="\n")

# Convert transliterated text to cuneiform
as.cuneiform(x)

# Using a custom mapping table
path <- system.file("extdata", "etcsl_mapping.txt", package = "sumer")
my_mapping <- read.csv2(path, sep=";", na.strings="")
as.cuneiform("lugal", mapping = my_mapping)

as.sign_name Convert Transliterated Sumerian Text to Sign Names

Description

Converts transliterated Sumerian text to canonical sign names in uppercase notation. This is a
generic function with a method for character vectors.

Usage

as.sign_name(x, ...)

## Default S3 method:
as.sign_name(x, ...)



as.sign_name 7

## S3 method for class 'character'
as.sign_name(x, mapping = NULL, ...)

## S3 method for class 'sign_name'
print(x, ...)

Arguments

x For as.sign_name: An object to be converted to sign names. Currently, only
character vectors are supported.
For print.sign_name: An object of class "sign_name".

mapping A data frame containing the sign mapping table with columns syllables, name,
and cuneiform. If NULL (the default), the package’s internal mapping file ‘etcsl_mapping.txt’
is loaded. Only used by the character method.

... Additional arguments passed to methods.

Details

The function processes each element of the input character vector by:

1. Calling info to look up sign information for each transliterated sign.

2. Extracting the canonical sign names for each sign.

3. Reconstructing the text using the original separators, but replacing hyphens with periods to
follow standard sign name notation.

The default method throws an error for unsupported input types.

Value

as.sign_name returns a character vector of class c("sign_name", "character") with the sign
name representation of each input element.

print.sign_name displays a character vector of class "sign_name".

See Also

as.cuneiform for converting to cuneiform characters, info for retrieving detailed sign information,
split_sumerian for splitting Sumerian text into signs

Examples

# Convert transliterated text to sign names
as.sign_name(c("lugal-e", "an-ki"))

# Load transliterated text from a file
file <- system.file("extdata", "transliterated-text.txt", package = "sumer")
x <- readLines(file)
cat(x, sep="\n")



8 convert_to_dictionary

# Convert transliterated text to sign names
as.sign_name(x)

# Using a custom mapping table
path <- system.file("extdata", "etcsl_mapping.txt", package = "sumer")
my_mapping <- read.csv2(path, sep=";", na.strings="")
as.sign_name("lugal", mapping = my_mapping)

convert_to_dictionary Convert Translation Data to a Sumerian Dictionary

Description

Converts a data frame of Sumerian translations into a structured dictionary format, adding cuneiform
representations and phonetic readings for each sign.

Usage

convert_to_dictionary(df, mapping = NULL)

Arguments

df A data frame with columns sign_name, type, and meaning, typically produced
by read_translated_text.

mapping A data frame containing sign-to-reading mappings with columns name, cuneiform
and syllables. If NULL (default), the package’s built-in mapping file etcsl_mapping.txt
is used.

Details

Processing Steps:

1. Aggregates translations and counts occurrences of each unique combination in df

2. Looks up phonetic readings and cuneiform signs for each sign component
3. Combines cuneiform, reading, and translation rows into a single data frame
4. Sorts the result by sign name and row type

Reading Format: Phonetic readings are formatted as follows:

• Multiple possible readings are enclosed in braces: {a, dur5, duru5}

• For compound signs, readings of individual components are joined with hyphens
• If a sign has more than three possible readings in a compound, only the first three are shown

followed by ...

• Unknown readings are marked with ?



convert_to_dictionary 9

Value

A data frame with the following columns:

sign_name The normalized Sumerian text (e.g., "A", "AN", "A2.TAB")

row_type Type of entry: "cunei." (cuneiform character), "reading" (phonetic readings), or
"trans." (translation)

count Number of occurrences for translations; NA for cuneiform and reading entries

type Grammatical type (e.g., "S", "V", "A") for translations; empty string for other row types

meaning The cuneiform character(s), phonetic reading(s), or translated meaning depending on
row_type

The data frame is sorted by sign_name, row_type, and descending count.

See Also

read_translated_text for reading translation files, make_dictionary for creating a complete
dictionary with cuneiform representations and readings in a single step.

Examples

# Read translations from a single text document
filename <- system.file("extdata", "text_with_translations.txt", package = "sumer")
translations <- read_translated_text(filename)

# View the structure
head(translations)

#Make some custom unifications (here: removing the word "the")
translations$meaning <- gsub("\\bthe\\b", "", translations$meaning, ignore.case = TRUE)
translations$meaning <- trimws(gsub("\\s+", " ", translations$meaning))

# View the structure
head(translations)

#Convert the result into a dictionary
dictionary <- convert_to_dictionary(translations)

# View the structure
head(dictionary)

# View entries for a specific sign
dictionary[dictionary$sign_name == "EN", ]

# With custom mapping
path <- system.file("extdata", "etcsl_mapping.txt", package = "sumer")
mapping <- read.csv2(path, sep=";", na.strings="")
translations <- read_translated_text(filename, mapping = mapping)
dictionary <- convert_to_dictionary(translations, mapping = mapping)
head(dictionary)



10 grammar_probs

grammar_probs Posterior Probabilities of Grammatical Types for Each Sign

Description

For each cuneiform sign in a sentence, computes Bayesian posterior probabilities for all grammat-
ical types, combining prior beliefs from prior_probs with observed dictionary frequencies. The
dictionary counts are corrected for verb underrepresentation using the sentence_prob stored in the
prior.

Usage

grammar_probs(sg, prior, dic, alpha0 = 1)

Arguments

sg A data frame as returned by sign_grammar.

prior A named numeric vector as returned by prior_probs, with a sentence_prob
attribute.

dic A dictionary data frame as returned by read_dictionary.

alpha0 Numeric (>= 0). Strength of the prior (pseudo sample size). Larger values pull
the posterior towards the prior. When alpha0 = 0, the result is purely data-
driven. Default: 1.

Details

For each sign at position i in the sentence, the function computes:

1. The raw dictionary counts nk for each grammar type k.

2. A correction factor xk = 1/sentence_prob for verb-like types, xk = 1 otherwise. The
corrected counts are mk = nk · xk with total M =

∑
k mk.

3. The posterior probability (Dirichlet-Multinomial model):

θk =
α0 pk +mk

α0 +M

where pk is the prior probability from prior_probs().

For signs not in the dictionary (M = 0), the posterior equals the prior. For signs with many
observations (M ≫ α0), the posterior is dominated by the data.



info 11

Value

A data frame with columns:

position Integer. Position of the sign in the sentence.

sign_name Character. The sign name.

cuneiform Character. The cuneiform character.

type Character. The grammar type (e.g., "S", "V", "Sx->S").

prob Numeric. Posterior probability for this type at this position.

n Numeric. Number of counts in the dictionary.

See Also

prior_probs for computing the prior, sign_grammar for the input data, plot_sign_grammar for
visualisation.

Examples

dic <- read_dictionary()
sg <- sign_grammar("a-ma-ru ba-ur3 ra", dic)
prior <- prior_probs(dic, sentence_prob = 0.25)
gp <- grammar_probs(sg, prior, dic, alpha0 = 1)
print(gp)

info Retrieve Information About Sumerian Signs

Description

Analyzes a transliterated Sumerian text string and retrieves detailed information about each sign,
including syllabic readings, sign names, cuneiform symbols, and alternative readings.

The function info computes the result and returns an object of class "info". The print method
displays a summary of different text representations in the console.

Usage

info(x, mapping = NULL)

## S3 method for class 'info'
print(x, flatten = FALSE, ...)



12 info

Arguments

x For info: a character string of length 1 containing transliterated Sumerian text.
For print.info: an object of class "info".

mapping A data frame containing the sign mapping table with columns syllables, name,
and cuneiform. If NULL (the default), the package’s internal mapping file ‘etcsl_mapping.txt’
is loaded.

flatten Logical. If TRUE, grammar indicators in the text are removed (such as parenthe-
ses, brackets, braces, and operators). If FALSE (the default), the original separa-
tors are preserved.

... Additional arguments passed to the print method (currently unused).

Details

The function info performs the following steps:

1. Splits the input string into signs and separators using split_sumerian.

2. Standardizes the signs.

3. Looks up each sign in the mapping table based on its type:

• Type 1 (lowercase): Searches for a matching syllable reading.
• Type 2 (uppercase): Searches for a matching sign name.
• Type 3 (cuneiform): Searches for a matching cuneiform character.

4. Returns a data frame with the results, along with the separators stored as an attribute.

The mapping table must contain the following columns:

syllables Comma-separated list of possible syllabic readings for the sign. The first reading is used
as the default.

name The canonical sign name in uppercase.

cuneiform The Unicode cuneiform character.

The print method displays each sign with its name and alternative readings, followed by three text
representations: syllables, sign names, and cuneiform text.

Value

info returns a data frame of class c("info", "data.frame") with one row per sign and the fol-
lowing columns:

reading The syllabic reading of the sign. For lowercase input, this is the standardized
input; for other types, this is the default syllable from the mapping.

sign The Unicode cuneiform character corresponding to the sign.

name The canonical sign name in uppercase.

alternatives A comma-separated string of all possible syllabic readings for the sign.

The data frame has an attribute "separators" containing the separator characters between signs.

print.info prints the following to the console and returns x invisibly:



look_up 13

Sign table Each sign with its cuneiform symbol, name, and alternative readings.
syllables The text with syllabic readings, using hyphens as separators within words.
sign names The text with sign names, using periods as separators within words.
cuneiform text The text rendered in Unicode cuneiform characters, with hyphens and periods re-

moved.

Note

If no custom mapping is provided, the function loads the internal mapping file included with the
sumer package.

See Also

split_sumerian for splitting Sumerian text into signs,

Examples

library(stringr)

# Basic usage - compute and print
info("lugal-e")

# Store the result for further processing
result <- info("an-ki")
result

# Access the underlying data frame
result$sign
result$name

# Print with and without flattened separators
result <- info("(an)na")
print(result)
print(result, flatten = TRUE)

# Using a custom mapping table
path <- system.file("extdata", "etcsl_mapping.txt", package = "sumer")
my_mapping <- read.csv2(path, sep=";", na.strings="")
info("an-ki", mapping = my_mapping)

look_up Look Up Sumerian Signs or Search for Translations

Description

Searches a Sumerian dictionary either by sign name (forward lookup) or by translation text (reverse
lookup).

The function look_up computes the search results and returns an object of class "look_up". The
print method displays formatted results with cuneiform representations, grammatical types, and
translation counts.



14 look_up

Usage

look_up(x, dic, lang = "sumer", width = 70)

## S3 method for class 'look_up'
print(x, ...)

Arguments

x For look_up: A character string specifying the search term. Can be either:

• A Sumerian sign name (e.g., "AN", "AN.EN.ZU")
• A cuneiform character string
• A word or phrase to search in translations (e.g., "Gilgamesh", "heaven")

For print.look_up: An object of class "look_up" as returned by look_up.

dic A dictionary data frame, typically created by make_dictionary or loaded with
read_dictionary. Must contain columns sign_name, row_type, count, type,
and meaning.

lang Character string specifying whether x is a Sumerian expression ("sumer") or an
English expression ("en").

width Integer specifying the text width for line wrapping. Default is 70.

... Additional arguments passed to the print method (currently unused).

Details

Search Modes: The function operates in two modes depending on the input:
Forward Lookup (Sumerian input detected):

1. Converts the sign name to cuneiform
2. Retrieves all translations for the exact sign combination
3. Retrieves translations for all individual signs and substrings

Reverse Lookup (non-Sumerian input):

1. Searches for the term in all translation meanings
2. Retrieves matching entries with sign names and cuneiform

Output Format: The print method displays results with:

• Sign names with cuneiform representations
• Occurrence counts in brackets (e.g., [29])
• Grammatical type abbreviations (e.g., S, V)
• Translation meanings with automatic line wrapping
• Search term highlighting in blue for reverse lookups (only for ANSI-compatible terminals)

Value

look_up returns an object of class "look_up", which is a list containing:

search The original search term.



look_up 15

lang The language setting used for the search.

width The text width for formatting.

cuneiform The cuneiform representation (only for Sumerian searches).

sign_name The canonical sign name (only for Sumerian searches).

translations A data frame with translations for the exact sign combination (only for Sumerian
searches).

substrings A named list of data frames with translations for individual signs and substrings
(only for Sumerian searches).

matches A data frame with matching entries (only for non-Sumerian searches).

print.look_up prints formatted dictionary entries to the console and returns x invisibly.

See Also

read_dictionary for loading dictionaries, make_dictionary for creating dictionaries, as.cuneiform
for cuneiform conversion.

Examples

# Load dictionary
dic <- read_dictionary()

# Forward lookup: search by phonetic spelling
look_up("d-suen", dic)

# Forward lookup: search by Sumerian sign name
look_up("AN", dic)
look_up("AN.EN.ZU", dic)

# Forward lookup: search by cuneiform character string
AN.NA <- paste0(intToUtf8(0x1202D), intToUtf8(0x1223E))
AN.NA
look_up(AN.NA, dic)

# Reverse lookup: search in translations
look_up("Gilgamesh", dic, "en")

# Adjust output width for narrow terminals
look_up("water", dic, "en", width = 50)

# Store results for later use
result <- look_up("lugal", dic)
result$cuneiform
result$translations

# Print stored results
print(result)



16 make_dictionary

make_dictionary Create a Sumerian Dictionary from Annotated Text Files

Description

Parses Word documents (.docx) or plain text files containing annotated Sumerian translations and
creates a structured dictionary data frame. The function extracts sign names, their cuneiform repre-
sentations, possible readings, and translations with grammatical types.

Usage

make_dictionary(file, mapping = NULL)

Arguments

file A character vector of file paths to .docx or text files. Files must contain transla-
tion lines that are formatted as described below.

mapping A data frame containing sign-to-reading mappings with columns name, cuneiform
and syllables. If NULL (default), the package’s built-in mapping file etcsl_mapping.txt
is used.

Details

Input Format: The input files must contain lines starting with | in the following format:
|sign_name: TYPE: meaning

or
|equation for sign_name: TYPE: meaning

For example:

|a2-tab: S: the double amount of work performance
|me=ME: S: divine force
|AN: S: god of heaven
|na=NA: Sx->A: whose existence is bound to S

Lines not starting with | are ignored. Only the first entry in an equation of sign names is used for
the dictionary. The following notation is suggested for grammatical types:

• S for substantives and noun phrases, (e.g., "the old man in the temple")
• V for verbs and decorated verbs (e.g., "to go", "to bring the delivery into the temple")
• A for adjectives, attributes and subordinate clauses that further define the subject (e.g., "who/which

is weak", "whose resource for sustaining life is grain")
• Sx->A for a symbol that transforms the preceding noun phrase into an attribute (e.g., "whose

resource for sustaining life is S"). Other transformations are denoted accordingly.
• N for numbers,
• D for everything else.

Processing Steps:



mark_ngrams 17

1. Extracts text from .docx files or reads plain text
2. Filters lines starting with |

3. Normalizes sign names and looks up possible readings from the mapping table
4. Aggregates translations and counts occurrences

Output Structure: For each unique sign, the output contains:

• One cunei. row with the cuneiform character(s)
• One reading row with possible phonetic readings
• One or more trans. rows with translations, sorted by frequency

Value

A data frame with the following columns:

sign_name The normalized Sumerian sign name (e.g., "A", "AN", "ME")

line_type Type of entry: "cunei." (cuneiform), "reading" (phonetic readings), or "trans."
(translation)

count Number of occurrences for translations; NA for cuneiform and reading entries

type Grammatical type (e.g., "S", "V", "Sx->A") for translations; empty for other line types

meaning The cuneiform character(s), reading(s), or translated meaning depending on line_type

See Also

as.cuneiform, split_sumerian

Examples

# Create a dictionary from a single text document
filename <- system.file("extdata", "text_with_translations.txt", package = "sumer")
dict <- make_dictionary(filename)

# Use the dictionary
look_up("an", dict)

mark_ngrams Mark N-gram Combinations in Cuneiform Text

Description

Takes a character vector of Sumerian text and marks all n-gram combinations (from ngram_frequencies)
with curly braces. Longer combinations are marked first, shorter ones afterwards (including inside
already-marked regions).

Usage

mark_ngrams(x, ngram)



18 mark_ngrams

Arguments

x A character vector of Sumerian text (transliteration, sign names, or cuneiform).
Will be converted to cuneiform internally.

ngram A data frame as returned by ngram_frequencies, with at least columns combination
and length.

Details

The function first converts x to cuneiform (if not already) and removes spaces and brackets ()[]{}.

Then it sorts ngram descending by length and replaces each occurrence of a combination with
{combination} (space, open brace, combination, close brace, space).

Shorter n-grams may be marked inside already-marked longer n-grams (nesting is allowed).

Value

A character vector of cuneiform text with n-gram combinations enclosed in curly braces and sur-
rounded by spaces.

See Also

ngram_frequencies

Examples

# Load the example text of "Enki and the World Order"
path <- system.file("extdata", "enki_and_the_world_order.txt", package = "sumer")
text <- readLines(path, encoding="UTF-8")
cat(text[1:10],sep="\n")

# Find combinations that appear at least 6 times in the text
freq <- ngram_frequencies(text, min_freq = 6)
freq[1:10,]

# Mark these combinations in the text
text_marked <- mark_ngrams(text, freq)
cat(text_marked[1:10], sep="\n")

# You can enter transliterated text
x <- "kij2-sig unu2 gal d-re-e-ne-ka me-te-ac im-mi-ib-jal2"
mark_ngrams(x, freq)

# Find all occurences of a pattern in the annotated text
term <- "IGI.DIB.TU"
(pattern <- mark_ngrams(term, freq))
result <- text_marked[grepl(pattern, text_marked, fixed=TRUE)]
cat(result, sep="\n")



ngram_frequencies 19

ngram_frequencies Frequency Analysis of Cuneiform Sign Combinations (N-grams)

Description

Analyzes a Sumerian text for frequently occurring cuneiform sign combinations (n-grams). The in-
put can be either cuneiform text or transliterated text (which is automatically converted to cuneiform
via as.cuneiform). The analysis starts with the longest combinations and works down to single
signs, masking already-counted occurrences to avoid reporting subsequences that are only frequent
because they are part of a longer frequent combination. N-grams are searched within lines only (not
across line boundaries).

Usage

ngram_frequencies(x, min_freq = c(6, 4, 2))

Arguments

x Character vector whose elements are the lines of a Sumerian text. The input can
be either cuneiform characters or transliterated text. If no cuneiform characters
(U+12000 to U+1254F) are detected, the input is automatically converted using
as.cuneiform. Lines starting with # are treated as comments and ignored. Op-
tional line numbers at the beginning of a line (e.g., "42)\t") are automatically
removed. Spaces are removed before tokenization.

min_freq Integer vector specifying minimum frequencies (default: c(6, 4, 2)). The i-th
value specifies the minimum frequency for combinations of length i. For lengths
beyond the vector’s length, the last value is used.

The default c(6, 4, 2) means: single signs must occur at least 6 times, pairs at
least 4 times, and all longer combinations at least 2 times.

Details

A “sign” is defined as either a single cuneiform Unicode character (U+12000 to U+1254F) or a
character sequence enclosed in mathematical angle brackets (U+27E8 ... U+27E9), which is treated
as a single token. All other characters (spaces, X, numbers, punctuation, etc.) are skipped during
tokenization.

The maximum n-gram length is automatically determined as the length of the longest tokenized line
in the input.

The analysis proceeds from the longest combinations down to single signs. When a combination is
identified as frequent (i.e., meets the minimum frequency threshold), all occurrences except the first
are masked before continuing with shorter combinations. This prevents subsequences from being
reported as frequent when their frequency is solely due to a longer frequent combination.



20 plot_sign_grammar

Value

A data frame with four columns, sorted by descending length, then descending frequency:

frequency Integer. The number of occurrences of the combination.

length Integer. The number of signs in the combination.

sign_names Character. The sign names of the combination (e.g., "AN.EN.KI").

combination Character. The cuneiform sign combination (e.g., "\U0001202D\U00012097\U000120A0").

See Also

as.sign_name for converting cuneiform to sign names, as.cuneiform for converting translitera-
tions to cuneiform, split_sumerian for tokenizing transliterated text.

Examples

# Read the text "Enki and the World Order"

path <- system.file("extdata", "enki_and_the_world_order.txt", package = "sumer")
text <- readLines(path, encoding="UTF-8")

cat(text[1:10],sep="\n")

# Find combinations that appear at least 6 times in the text
freq <- ngram_frequencies(text, min_freq = 6)

freq[1:10,]

plot_sign_grammar Stacked Bar Chart of Grammatical Type Frequencies

Description

Creates a stacked bar chart from the output of sign_grammar or grammar_probs. Each bar rep-
resents one sign position in the sentence. The colours indicate the relative frequency or posterior
probability of each individual grammatical type.

Usage

plot_sign_grammar(sg,
output_file = NULL,
width = 10,
height = 5,
sign_names = FALSE,
font_family = NULL)



plot_sign_grammar 21

Arguments

sg A data frame as returned by sign_grammar (with column n) or grammar_probs
(with column prob).

output_file Character. File path for saving the plot (PNG or JPG). If NULL (default), the plot
is displayed on the current device.

width Numeric. Plot width in inches. Default: 10.
height Numeric. Plot height in inches. Default: 5.
sign_names Logical. Whether sign names or cuneiform characters should be used as labels

of the x-axis. Default: FALSE.
font_family Character. Font family for cuneiform x-axis labels. If NULL (default), a cuneiform-

capable font is detected automatically.

Details

When the input comes from sign_grammar() (column n), absolute frequencies are converted to
percentages so that bars sum to 100%. When the input comes from grammar_probs() (column
prob), posterior probabilities are used directly.

Colours are assigned per grammatical type, grouped by class:

• Red shades: Verbs (V) and operators returning verbs
• Blue shades: Operators returning attributes A
• Orange: Adjectives and other signs with grammatical type (Sx->S)
• Green: Nouns
• Grey/other shades: All other types

Value

Invisibly returns the ggplot2 plot object.

See Also

sign_grammar for generating raw frequency data, grammar_probs for Bayesian posterior proba-
bilities, prior_probs for computing the prior.

Examples

dic <- read_dictionary()
sg <- sign_grammar("a-ma-ru ba-ur3 ra", dic)

# Plot raw frequencies
file <- file.path(tempdir(), "test.png")
plot_sign_grammar(sg, file)

# Plot probabilities
prior <- prior_probs(dic, sentence_prob = 0.25)
gp <- grammar_probs(sg, prior, dic, alpha0 = 1)
file <- file.path(tempdir(), "test2.png")
plot_sign_grammar(gp, file)



22 prior_probs

prior_probs Prior Probabilities of Grammatical Types

Description

Computes prior probabilities for each grammatical type (e.g., S, V, Sx->S, xS->A, etc.) from a
dictionary. The priors can be corrected for verb underrepresentation in the dictionary data.

Usage

prior_probs(dic, sentence_prob = 1.0)

Arguments

dic A dictionary data frame as returned by read_dictionary.

sentence_prob Numeric in (0, 1]. The estimated proportion of complete sentences (as opposed
to noun phrases) in the training data from which the dictionary was created.
Verbs appear in complete sentences, so a value less than 1 upweights verb-like
types. Default: 1.0.

Details

The function proceeds in three steps:

1. For each single-sign dictionary entry with at least one count, the counts per grammatical type
are normalised to sum to 1.

2. The prior probability of each type is the mean of these normalised frequencies across all signs.

3. A correction is applied: counts of verb-like types (V and all operators with return type V,
such as Vx->V or xV->V) are multiplied by 1/sentence_prob, then all probabilities are renor-
malised. This compensates for the fact that verbs are underrepresented when most dictionary
entries are obtained from noun phrases rather than complete sentences.

When sentence_prob = 1, no correction is applied.

Value

A named numeric vector with one element per grammatical type found in the dictionary, summing
to 1. The names are the type strings as they appear in the dictionary (e.g., "S", "V", "Sx->S"). The
sentence_prob parameter is stored as an attribute.

See Also

sign_grammar for per-sign grammatical type frequencies.



read_dictionary 23

Examples

dic <- read_dictionary()

# Default usage
prior_probs(dic)

# Applying correction (only 25% sentences in training data)
prior_probs(dic, sentence_prob = 0.25)

read_dictionary Read a Sumerian Dictionary from File

Description

Reads a Sumerian dictionary from a semicolon-separated text file, optionally displaying the meta-
data header with author, version, and update information.

Usage

read_dictionary(file = NULL, verbose = TRUE)

Arguments

file A character string specifying the path to the dictionary file. If NULL (default),
the package’s built-in dictionary sumer-dictionary.txt is loaded.

verbose Logical. If TRUE (default), the metadata header (author, year, version, URL) is
printed to the console.

Details

File Format: The function expects a semicolon-separated file with a metadata header. Lines
starting with # are treated as comments. The expected format is:

###---------------------------------------------------------------
### Sumerian Dictionary
###
### Author: Robin Wellmann
### Year: 2026
### Version: 0.5
### Watch for Updates:
### https://founder-hypothesis.com/en/sumerian-mythology/downloads/
###---------------------------------------------------------------
sign_name;row_type;count;type;meaning
A;cunei.;;;<here would be the cuneiform sign for A>
A;reading;;;{a, dur5, duru5}
A;trans.;3;S;water

Encoding: The file is read with UTF-8 encoding to properly handle cuneiform characters.



24 read_translated_text

Value

A data frame with the following columns:

sign_name The Sumerian sign name (e.g., "A", "AN", "ME")
row_type Type of entry: "cunei." (cuneiform character), "reading" (phonetic readings), or

"trans." (translation)
count Number of occurrences for translations; NA for cuneiform and reading entries
type Grammatical type (e.g., "S", "V") for translations; empty string for other row types
meaning The cuneiform character(s), phonetic reading(s), or translated meaning depending on

row_type

See Also

save_dictionary for saving dictionaries to file, make_dictionary and convert_to_dictionary
for creating dictionaries.

Examples

# Load the built-in dictionary
dic <- read_dictionary()

# Load a custom dictionary
filename <- system.file("extdata", "sumer-dictionary.txt", package = "sumer")
dic <- read_dictionary(filename)

# Look up an entry
look_up("d-suen", dic)

read_translated_text Read Annotated Sumerian Translations from Text Files

Description

Reads Word documents (.docx) or plain text files containing annotated Sumerian translations and
extracts sign names, grammatical types, and meanings into a structured data frame.

Usage

read_translated_text(file, mapping=NULL)

Arguments

file A character vector of file paths to .docx or text files. Files must contain transla-
tion lines that are formatted as described below.

mapping A data frame containing sign-to-reading mappings with columns name, cuneiform
and syllables. If NULL (default), the package’s built-in mapping file etcsl_mapping.txt
is used.



read_translated_text 25

Details

Input Format: The input files must contain lines starting with | in the following format:
|sign_name: TYPE: meaning

or
|equation for sign_name: TYPE: meaning

For example:

|a2-tab: S: the double amount of work performance
|me=ME: S: divine force
|AN: S: god of heaven
|na=NA: Sx->A: whose existence is bound to S

Lines not starting with | are ignored. Only the first entry in an equation of sign names is extracted.
The following notation is suggested for grammatical types:

• S for substantives and noun phrases, (e.g., "the old man in the temple")
• V for verbs and decorated verbs (e.g., "to go", "to bring the delivery into the temple")
• A for adjectives, attributes and subordinate clauses that further define the subject (e.g., "who/which

is weak", "whose resource for sustaining life is grain")
• Sx->A for a symbol that transforms the preceding noun phrase into an attribute (e.g., "whose

resource for sustaining life is S"). Other transformations are denoted accordingly.
• N for numbers,
• D for everything else.

Processing Steps:
1. Reads text from .docx files or plain text files
2. Filters lines starting with |

3. Parses each line into sign name, type, and meaning components
4. Normalizes transliterated text by removing separators and looking up the sign names from

the mapping

5. Cleans meaning field by removing content after ; or | delimiters
6. Issues a warning for entries with missing type annotations
7. Excludes empty sign names from the result

Value

A data frame with the following columns:

sign_name The normalized sign name with components separated by hyphens (e.g., "A", "AN",
"X-NA")

type Grammatical type (e.g., "S", "V", "A", "Sx->A")

meaning The translated meaning of the sign

Note

If any translations have missing type annotations, the function prints a warning message listing the
affected entries.



26 save_dictionary

See Also

convert_to_dictionary for converting the result into a dictionary, make_dictionary for creating
a complete dictionary with cuneiform representations and readings in a single step.

Examples

# Read translations from a single text document
filename <- system.file("extdata", "text_with_translations.txt", package = "sumer")
translations <- read_translated_text(filename)

# View the structure
head(translations)

# Filter by grammatical type
nouns <- translations[translations$type == "S", ]
nouns

#Make some custom unifications (here: removing the word "the")
translations$meaning <- gsub("\\bthe\\b", "", translations$meaning, ignore.case = TRUE)
translations$meaning <- trimws(gsub("\\s+", " ", translations$meaning))

# View the structure
head(translations)

#Convert the result into a dictionary
dictionary <- convert_to_dictionary(translations)

# View the structure
head(dictionary)

save_dictionary Save a Sumerian Dictionary to File

Description

Saves a Sumerian dictionary data frame to a semicolon-separated text file with a metadata header
containing author, year, version, and URL information.

Usage

save_dictionary(dic, file, author = "", year = "", version = "", url = "")

Arguments

dic A dictionary data frame, typically created by make_dictionary or convert_to_dictionary.
Must contain columns sign_name, row_type, count, type, and meaning.

file A character string specifying the output file path.



save_dictionary 27

author A character string with the author name(s) for the metadata header.

year A character string with the year of creation for the metadata header.

version A character string with the version number for the metadata header.

url A character string with a URL where updates can be found.

Details

Output Format: The output file consists of two parts:

1. A metadata header with lines starting with ###, containing author, year, version, and URL
information

2. The dictionary data in semicolon-separated format with columns: sign_name, row_type,
count, type, meaning

Example output:

###---------------------------------------------------------------
### Sumerian Dictionary
###
### Author: Robin Wellmann
### Year: 2026
### Version: 1.0
### Watch for Updates: https://founder-hypothesis.com/sumer/
###---------------------------------------------------------------
sign_name;row_type;count;type;meaning
A;cunei.;;;<cuneiform sign for A>
A;reading;;;{a, dur5, duru5}
A;trans.;3;S;water

Value

No return value. The function is called for its side effect of writing the dictionary to a file.

See Also

make_dictionary and convert_to_dictionary for creating dictionaries, read_dictionary for
reading saved dictionaries.

Examples

# Create and save a dictionary

filename <- system.file("extdata", "text_with_translations.txt", package = "sumer")
dictionary <- make_dictionary(filename)

save_dictionary(
dic = dictionary,
file = file.path(tempdir(), "sumerian_dictionary.txt"),
author = "John Doe",
year = "2026",
version = "1.0",



28 sign_grammar

url = "https://example.com/dictionary"
)

sign_grammar Grammatical Type Frequencies for Each Sign in a Sumerian Sentence

Description

For each cuneiform sign in a Sumerian sentence, looks up the dictionary to determine the frequency
of each individual grammatical type (e.g., S, V, Sx->S, xS->A). Returns a data frame with one row
per sign per grammatical type.

Usage

sign_grammar(x, dic)

Arguments

x A single character string containing a Sumerian sentence (cuneiform, sign names,
or transliteration).

dic A dictionary data frame as returned by read_dictionary.

Details

The function converts the input to cuneiform, splits it into individual signs, and looks up each sign
in the dictionary. For each sign, the translations are grouped by their individual type string (e.g.,
"S", "V", "Sx->S", "xS->A").

For each type the dictionary count values are summed. If a translation entry has no count, it is
treated as 1.

The set of types returned is the union of all types found across all signs in the sentence. Each sign
gets one row per type, even if the count is 0 for that type.

Value

A data frame with columns:

position Integer. Position of the sign in the sentence.

sign_name Character. The sign name (e.g., "KA").

cuneiform Character. The cuneiform character.

type Character. The grammar type string (e.g., "S", "V", "Sx->S").

n Integer. Sum of dictionary counts for this sign and this type.

See Also

grammar_probs for Bayesian posterior probabilities, plot_sign_grammar for visualising the re-
sult, read_dictionary for loading a dictionary, as.cuneiform for cuneiform conversion.



skeleton 29

Examples

dic <- read_dictionary()

# Analyse a sentence
sg <- sign_grammar("a-ma-ru ba-ur3 ra", dic)
print(sg)

# Use with cuneiform input
x<-"\U00012000\U000121AD"
print(x)
sg <- sign_grammar(x, dic)
print(sg)

skeleton Create a Translation Template for Sumerian Text

Description

Creates a structured template (skeleton) for translating Sumerian text. The template displays each
word and syllable with its sign name and cuneiform representation, providing a framework for
adding translations.

The function skeleton computes the template and returns an object of class "skeleton". The
print method displays the template in the console.

Usage

skeleton(x, mapping = NULL)

## S3 method for class 'skeleton'
print(x, ...)

Arguments

x For skeleton: A character string of length 1 containing transliterated Sumerian
text. Words are separated by spaces, syllables within words by hyphens or other
separators.

For print.skeleton: An object of class "skeleton" as returned by skeleton.

mapping A data frame containing the sign mapping table with columns syllables, name,
and cuneiform. If NULL (the default), the package’s internal mapping file ‘etcsl_mapping.txt’
is loaded.

... Additional arguments passed to the print method (currently unused).



30 skeleton

Details

The function generates a hierarchical template with different levels of detail depending on the input
type:

Multiple words The template includes a header line with the original text, followed by entries
for each word, its syllables (indented with one tab), and sub-signs for multi-sign syllables
(indented with two tabs).

Single word (multiple syllables) The word equation serves as the header, followed by syllable
entries (one tab) and sub-sign entries (two tabs). No redundant header line is generated.

Single syllable Only the syllable equation is shown (no indentation), with sub-sign entries indented
by one tab if applicable.

Each line in the template follows the format

|[tabs]reading=SIGN.NAME=cuneiform::

The template should be filled in as follows:

• Between the two colons: the grammatical type of the expression (e.g., S for noun phrases, V
for verbs, etc.). See make_dictionary for details.

• After the second colon: the translation

For example, a filled-in line might look like:

|an=AN=<cuneiform sign for AN>:S: god of heaven

Redundant lines are automatically omitted: if a word consists of only one syllable, no separate
syllable line is generated.

This function is intended to be used together with look_up for translating Sumerian texts: first
create a template with skeleton, then use look_up to find the meanings of words and signs, and
fill in the template accordingly.

The template format is designed to be saved as a text file (.txt) or Word document (.docx), filled in
manually, and can then be used as input for make_dictionary to create a custom dictionary.

Value

skeleton returns a character vector of class c("skeleton", "character") containing the tem-
plate lines.

print.skeleton prints the template to the console and returns x invisibly.

See Also

look_up for looking up translations of Sumerian signs and words, make_dictionary for creating
a dictionary from filled-in templates, info for retrieving detailed sign information



split_sumerian 31

Examples

# Create a template for a multi-word phrase
skeleton("e-ta-na an-ce3 ba-ed3-de3")

# Create a template for a single word
skeleton("lugal-e")

# Create a template for a single syllable
skeleton("an")

# Store the template for further use
tmpl <- skeleton("lu2 du")
tmpl

# Typical workflow: create template, then look up meanings
dic <- read_dictionary()
tmpl <- skeleton("lugal kur-ra-ke4")
print(tmpl)
look_up("lugal", dic)
look_up("kur", dic)

split_sumerian Split a String into Sumerian Signs and Separators

Description

Splits a transliterated Sumerian text string into its constituent signs and the separators between them.
The function recognizes three types of Sumerian sign representations: lowercase transliterations,
uppercase sign names, and Unicode cuneiform characters.

Usage

split_sumerian(x)

Arguments

x A character string containing transliterated Sumerian text.

Details

The function identifies Sumerian signs based on three patterns:

1. Lowercase transliterations (type 1): Sequences of lowercase letters (a-z) including special
characters (ĝ, š, ...) and accented vowels (á, é, í, ú, à, è, ì, ù), optionally followed by a numeric
index.

2. Uppercase sign names (type 2): Sequences starting with an uppercase letter, optionally fol-
lowed by additional uppercase letters, digits, or the characters +, /, and ×.



32 split_sumerian

3. Cuneiform characters (type 3): Unicode characters in the Cuneiform block (U+12000 to
U+12500).

The function returns the signs and separators in a format that allows exact reconstruction of the
original string using paste0(c("", signs), separators, collapse = "").

Value

A list with three components:

signs A character vector containing the extracted Sumerian signs.

separators A character vector of length length(signs) + 1 containing the separators. The
first element contains any text before the first sign, subsequent elements contain
text between consecutive signs, and the last element contains any text after the
final sign. Empty strings indicate no separator at that position.

types An integer vector of the same length as signs indicating the type of each sign: 1
for lowercase transliterations, 2 for uppercase sign names, and 3 for cuneiform
characters.

Examples

# Example 1

set.seed(4)

x <- "en-tarah-an-na-ke4"

result <- split_sumerian(x)

result

# Example 2

x <- "en-DARA3.AN.na-ke4"

result <- split_sumerian(x)

result

# Reconstruct the original string
paste0(c("", result$signs), result$separators, collapse = "")



Index

∗ character
as.cuneiform, 5
as.sign_name, 6
info, 11
skeleton, 29
split_sumerian, 31

∗ database
look_up, 13

∗ hplot
plot_sign_grammar, 20

∗ methods
as.cuneiform, 5
as.sign_name, 6

∗ univar
ngram_frequencies, 19

∗ utilities
as.cuneiform, 5
as.sign_name, 6
grammar_probs, 10
info, 11
look_up, 13
ngram_frequencies, 19
prior_probs, 22
sign_grammar, 28
skeleton, 29
split_sumerian, 31

as.cuneiform, 2, 5, 5, 7, 15, 17, 19, 20, 28
as.sign_name, 2, 5, 6, 6, 20

convert_to_dictionary, 4, 5, 8, 24, 26, 27

grammar_probs, 4, 5, 10, 20, 21, 28

info, 3, 5–7, 11, 30

look_up, 3, 5, 13, 30

make_dictionary, 4, 5, 9, 14, 15, 16, 24, 26,
27, 30

mark_ngrams, 3, 5, 17

ngram_frequencies, 3, 5, 17, 18, 19

plot_sign_grammar, 4, 5, 11, 20, 28
print.cuneiform (as.cuneiform), 5
print.info (info), 11
print.look_up (look_up), 13
print.sign_name (as.sign_name), 6
print.skeleton (skeleton), 29
prior_probs, 4, 5, 10, 11, 21, 22

read_dictionary, 4, 5, 10, 14, 15, 22, 23, 27,
28

read_translated_text, 4, 5, 8, 9, 24

save_dictionary, 4, 5, 24, 26
sign_grammar, 4, 5, 10, 11, 20–22, 28
skeleton, 3, 5, 29
split_sumerian, 5–7, 12, 13, 17, 20, 31
sumer (sumer-package), 2
sumer-package, 2

33


	sumer-package
	as.cuneiform
	as.sign_name
	convert_to_dictionary
	grammar_probs
	info
	look_up
	make_dictionary
	mark_ngrams
	ngram_frequencies
	plot_sign_grammar
	prior_probs
	read_dictionary
	read_translated_text
	save_dictionary
	sign_grammar
	skeleton
	split_sumerian
	Index

