
Package ‘testthat’
January 11, 2026

Title Unit Testing for R

Version 3.3.2

Description Software testing is important, but, in part because it is
frustrating and boring, many of us avoid it. 'testthat' is a testing
framework for R that is easy to learn and use, and integrates with
your existing 'workflow'.

License MIT + file LICENSE

URL https://testthat.r-lib.org, https://github.com/r-lib/testthat

BugReports https://github.com/r-lib/testthat/issues

Depends R (>= 4.1.0)

Imports brio (>= 1.1.5), callr (>= 3.7.6), cli (>= 3.6.5), desc (>=
1.4.3), evaluate (>= 1.0.4), jsonlite (>= 2.0.0), lifecycle (>=
1.0.4), magrittr (>= 2.0.3), methods, pkgload (>= 1.4.0),
praise (>= 1.0.0), processx (>= 3.8.6), ps (>= 1.9.1), R6 (>=
2.6.1), rlang (>= 1.1.6), utils, waldo (>= 0.6.2), withr (>=
3.0.2)

Suggests covr, curl (>= 0.9.5), diffviewer (>= 0.1.0), digest (>=
0.6.33), gh, knitr, otel, otelsdk, rmarkdown, rstudioapi, S7,
shiny, usethis, vctrs (>= 0.1.0), xml2

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first watcher, parallel*

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Hadley Wickham [aut, cre],
Posit Software, PBC [cph, fnd],
R Core team [ctb] (Implementation of utils::recover())

1

https://testthat.r-lib.org
https://github.com/r-lib/testthat
https://github.com/r-lib/testthat/issues

2 Contents

Maintainer Hadley Wickham <hadley@posit.co>

Repository CRAN

Date/Publication 2026-01-11 09:10:02 UTC

Contents
CheckReporter . 3
comparison-expectations . 3
DebugReporter . 4
equality-expectations . 5
expect_all_equal . 6
expect_error . 7
expect_invisible . 10
expect_length . 11
expect_match . 12
expect_named . 14
expect_no_error . 15
expect_null . 16
expect_output . 17
expect_setequal . 18
expect_silent . 19
expect_snapshot . 20
expect_snapshot_file . 22
expect_snapshot_value . 24
expect_success . 25
expect_vector . 26
extract_test . 27
fail . 28
FailReporter . 29
inheritance-expectations . 29
is_testing . 31
JunitReporter . 32
ListReporter . 32
LlmReporter . 33
local_edition . 33
local_mocked_bindings . 34
local_mocked_r6_class . 36
local_mocked_s3_method . 36
local_test_context . 37
LocationReporter . 39
logical-expectations . 39
MinimalReporter . 40
mock_output_sequence . 41
MultiReporter . 42
ProgressReporter . 42
RStudioReporter . 43
set_state_inspector . 43

CheckReporter 3

SilentReporter . 44
skip . 44
SlowReporter . 46
snapshot_accept . 47
snapshot_download_gh . 48
StopReporter . 48
SummaryReporter . 49
TapReporter . 49
TeamcityReporter . 49
teardown_env . 50
test_dir . 50
test_file . 51
test_package . 53
test_path . 54
test_that . 55
try_again . 56
use_catch . 56

Index 60

CheckReporter Report results for R CMD check

Description
R CMD check displays only the last 13 lines of the result, so this report is designed to ensure that
you see something useful there.

See Also

Other reporters: DebugReporter, FailReporter, JunitReporter, ListReporter, LlmReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter,
TeamcityReporter

comparison-expectations

Do you expect a value bigger or smaller than this?

Description

These functions compare values of comparable data types, such as numbers, dates, and times.

4 DebugReporter

Usage

expect_lt(object, expected, label = NULL, expected.label = NULL)

expect_lte(object, expected, label = NULL, expected.label = NULL)

expect_gt(object, expected, label = NULL, expected.label = NULL)

expect_gte(object, expected, label = NULL, expected.label = NULL)

Arguments

object, expected
A value to compare and its expected bound.

label, expected.label
Used to customise failure messages. For expert use only.

See Also

Other expectations: equality-expectations, expect_error(), expect_length(), expect_match(),
expect_named(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

a <- 9
expect_lt(a, 10)

Not run:
expect_lt(11, 10)

End(Not run)

a <- 11
expect_gt(a, 10)
Not run:
expect_gt(9, 10)

End(Not run)

DebugReporter Interactively debug failing tests

Description

This reporter will call a modified version of recover() on all broken expectations.

equality-expectations 5

See Also

Other reporters: CheckReporter, FailReporter, JunitReporter, ListReporter, LlmReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter,
TeamcityReporter

equality-expectations Do you expect this value?

Description

These functions provide two levels of strictness when comparing a computation to a reference value.
expect_identical() is the baseline; expect_equal() relaxes the test to ignore small numeric
differences.

In the 2nd edition, expect_identical() uses identical() and expect_equal uses all.equal().
In the 3rd edition, both functions use waldo. They differ only in that expect_equal() sets tolerance
= testthat_tolerance() so that small floating point differences are ignored; this also implies that
(e.g.) 1 and 1L are treated as equal.

Usage

expect_equal(
object,
expected,
...,
tolerance = if (edition_get() >= 3) testthat_tolerance(),
info = NULL,
label = NULL,
expected.label = NULL

)

expect_identical(
object,
expected,
info = NULL,
label = NULL,
expected.label = NULL,
...

)

Arguments

object, expected
Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

https://github.com/r-lib/waldo

6 expect_all_equal

... 3e: passed on to waldo::compare(). See its docs to see other ways to control
comparison.
2e: passed on to compare()/identical().

tolerance 3e: passed on to waldo::compare(). If non-NULL, will ignore small floating
point differences. It uses same algorithm as all.equal() so the tolerance is
usually relative (i.e. mean(abs(x - y) / mean(abs(y)) < tolerance), except
when the differences are very small, when it becomes absolute (i.e. mean(abs(x - y) < tolerance).
See waldo documentation for more details.
2e: passed on to compare(), if set. It’s hard to reason about exactly what tol-
erance means because depending on the precise code path it could be either an
absolute or relative tolerance.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label, expected.label
Used to customise failure messages. For expert use only.

See Also

• expect_setequal()/expect_mapequal() to test for set equality.

• expect_reference() to test if two names point to same memory address.

Other expectations: comparison-expectations, expect_error(), expect_length(), expect_match(),
expect_named(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

a <- 10
expect_equal(a, 10)

Use expect_equal() when testing for numeric equality
Not run:
expect_identical(sqrt(2) ^ 2, 2)

End(Not run)
expect_equal(sqrt(2) ^ 2, 2)

expect_all_equal Do you expect every value in a vector to have this value?

Description

These expectations are similar to expect_true(all(x == "x")), expect_true(all(x)) and expect_true(all(!x))
but give more informative failure messages if the expectations are not met.

expect_error 7

Usage

expect_all_equal(object, expected)

expect_all_true(object)

expect_all_false(object)

Arguments

object, expected
Computation and value to compare it to.

Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

Examples

x1 <- c(1, 1, 1, 1, 1, 1)
expect_all_equal(x1, 1)

x2 <- c(1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2)
show_failure(expect_all_equal(x2, 1))

expect_all_true() and expect_all_false() are helpers for common cases
set.seed(1016)
show_failure(expect_all_true(rpois(100, 10) < 20))
show_failure(expect_all_false(rpois(100, 10) > 20))

expect_error Do you expect an error, warning, message, or other condition?

Description

expect_error(), expect_warning(), expect_message(), and expect_condition() check that
code throws an error, warning, message, or condition with a message that matches regexp, or a
class that inherits from class. See below for more details.

In the 3rd edition, these functions match (at most) a single condition. All additional and non-
matching (if regexp or class are used) conditions will bubble up outside the expectation. If these
additional conditions are important you’ll need to catch them with additional expect_message()/expect_warning()
calls; if they’re unimportant you can ignore with suppressMessages()/suppressWarnings().

It can be tricky to test for a combination of different conditions, such as a message followed by an
error. expect_snapshot() is often an easier alternative for these more complex cases.

8 expect_error

Usage

expect_error(
object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
info = NULL,
label = NULL

)

expect_warning(
object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
all = FALSE,
info = NULL,
label = NULL

)

expect_message(
object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
all = FALSE,
info = NULL,
label = NULL

)

expect_condition(
object,
regexp = NULL,
class = NULL,
...,
inherit = TRUE,
info = NULL,
label = NULL

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

expect_error 9

regexp Regular expression to test against.

• A character vector giving a regular expression that must match the error
message.

• If NULL, the default, asserts that there should be an error, but doesn’t test for
a specific value.

• If NA, asserts that there should be no errors, but we now recommend using
expect_no_error() and friends instead.

Note that you should only use message with errors/warnings/messages that you
generate. Avoid tests that rely on the specific text generated by another pack-
age since this can easily change. If you do need to test text generated by another
package, either protect the test with skip_on_cran() or use expect_snapshot().

class Instead of supplying a regular expression, you can also supply a class name.
This is useful for "classed" conditions.

... Arguments passed on to expect_match

fixed If TRUE, treats regexp as a string to be matched exactly (not a regular
expressions). Overrides perl.

perl logical. Should Perl-compatible regexps be used?

inherit Whether to match regexp and class across the ancestry of chained errors.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

all DEPRECATED If you need to test multiple warnings/messages you now need
to use multiple calls to expect_message()/ expect_warning()

Value

If regexp = NA, the value of the first argument; otherwise the captured condition.

Testing message vs class

When checking that code generates an error, it’s important to check that the error is the one you
expect. There are two ways to do this. The first way is the simplest: you just provide a regexp that
match some fragment of the error message. This is easy, but fragile, because the test will fail if the
error message changes (even if its the same error).

A more robust way is to test for the class of the error, if it has one. You can learn more about custom
conditions at https://adv-r.hadley.nz/conditions.html#custom-conditions, but in short,
errors are S3 classes and you can generate a custom class and check for it using class instead of
regexp.

If you are using expect_error() to check that an error message is formatted in such a way that it
makes sense to a human, we recommend using expect_snapshot() instead.

See Also

expect_no_error(), expect_no_warning(), expect_no_message(), and expect_no_condition()
to assert that code runs without errors/warnings/messages/conditions.

https://adv-r.hadley.nz/conditions.html#custom-conditions

10 expect_invisible

Other expectations: comparison-expectations, equality-expectations, expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
expect_silent(), inheritance-expectations, logical-expectations

Examples

Errors --
f <- function() stop("My error!")
expect_error(f())
expect_error(f(), "My error!")

You can use the arguments of grepl to control the matching
expect_error(f(), "my error!", ignore.case = TRUE)

Note that `expect_error()` returns the error object so you can test
its components if needed
err <- expect_error(rlang::abort("a", n = 10))
expect_equal(err$n, 10)

Warnings --
f <- function(x) {

if (x < 0) {
warning("*x* is already negative")
return(x)

}
-x

}
expect_warning(f(-1))
expect_warning(f(-1), "already negative")
expect_warning(f(1), NA)

To test message and output, store results to a variable
expect_warning(out <- f(-1), "already negative")
expect_equal(out, -1)

Messages --
f <- function(x) {

if (x < 0) {
message("*x* is already negative")
return(x)

}

-x
}
expect_message(f(-1))
expect_message(f(-1), "already negative")
expect_message(f(1), NA)

expect_invisible Do you expect the result to be (in)visible?

expect_length 11

Description

Use this to test whether a function returns a visible or invisible output. Typically you’ll use this to
check that functions called primarily for their side-effects return their data argument invisibly.

Usage

expect_invisible(call, label = NULL)

expect_visible(call, label = NULL)

Arguments

call A function call.

label Used to customise failure messages. For expert use only.

Value

The evaluated call, invisibly.

Examples

expect_invisible(x <- 10)
expect_visible(x)

Typically you'll assign the result of the expectation so you can
also check that the value is as you expect.
greet <- function(name) {

message("Hi ", name)
invisible(name)

}
out <- expect_invisible(greet("Hadley"))
expect_equal(out, "Hadley")

expect_length Do you expect an object with this length or shape?

Description

expect_length() inspects the length() of an object; expect_shape() inspects the "shape" (i.e.
nrow(), ncol(), or dim()) of higher-dimensional objects like data.frames, matrices, and arrays.

Usage

expect_length(object, n)

expect_shape(object, ..., nrow, ncol, dim)

12 expect_match

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

n Expected length.

... Not used; used to force naming of other arguments.

nrow, ncol Expected nrow()/ncol() of object.

dim Expected dim() of object.

See Also

expect_vector() to make assertions about the "size" of a vector.

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_match(),
expect_named(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

expect_length(1, 1)
expect_length(1:10, 10)
show_failure(expect_length(1:10, 1))

x <- matrix(1:9, nrow = 3)
expect_shape(x, nrow = 3)
show_failure(expect_shape(x, nrow = 4))
expect_shape(x, ncol = 3)
show_failure(expect_shape(x, ncol = 4))
expect_shape(x, dim = c(3, 3))
show_failure(expect_shape(x, dim = c(3, 4, 5)))

expect_match Do you expect a string to match this pattern?

Description

Do you expect a string to match this pattern?

Usage

expect_match(
object,
regexp,
perl = FALSE,
fixed = FALSE,
...,
all = TRUE,

expect_match 13

info = NULL,
label = NULL

)

expect_no_match(
object,
regexp,
perl = FALSE,
fixed = FALSE,
...,
all = TRUE,
info = NULL,
label = NULL

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

regexp Regular expression to test against.

perl logical. Should Perl-compatible regexps be used?

fixed If TRUE, treats regexp as a string to be matched exactly (not a regular expres-
sions). Overrides perl.

... Arguments passed on to base::grepl

ignore.case logical. if FALSE, the pattern matching is case sensitive and if
TRUE, case is ignored during matching.

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-
by-character. See ‘Details’.

all Should all elements of actual value match regexp (TRUE), or does only one
need to match (FALSE).

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

Details

expect_match() checks if a character vector matches a regular expression, powered by grepl().

expect_no_match() provides the complementary case, checking that a character vector does not
match a regular expression.

Functions

• expect_no_match(): Check that a string doesn’t match a regular expression.

14 expect_named

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_named(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

expect_match("Testing is fun", "fun")
expect_match("Testing is fun", "f.n")
expect_no_match("Testing is fun", "horrible")

show_failure(expect_match("Testing is fun", "horrible"))
show_failure(expect_match("Testing is fun", "horrible", fixed = TRUE))

Zero-length inputs always fail
show_failure(expect_match(character(), "."))

expect_named Do you expect a vector with (these) names?

Description

You can either check for the presence of names (leaving expected blank), specific names (by
supplying a vector of names), or absence of names (with NULL).

Usage

expect_named(
object,
expected,
ignore.order = FALSE,
ignore.case = FALSE,
info = NULL,
label = NULL

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

expected Character vector of expected names. Leave missing to match any names. Use
NULL to check for absence of names.

ignore.order If TRUE, sorts names before comparing to ignore the effect of order.
ignore.case If TRUE, lowercases all names to ignore the effect of case.
info Extra information to be included in the message. This argument is soft-deprecated

and should not be used in new code. Instead see alternatives in quasi_label.
label Used to customise failure messages. For expert use only.

expect_no_error 15

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_null(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

x <- c(a = 1, b = 2, c = 3)
expect_named(x)
expect_named(x, c("a", "b", "c"))

Use options to control sensitivity
expect_named(x, c("B", "C", "A"), ignore.order = TRUE, ignore.case = TRUE)

Can also check for the absence of names with NULL
z <- 1:4
expect_named(z, NULL)

expect_no_error Do you expect the absence of errors, warnings, messages, or other
conditions?

Description

These expectations are the opposite of expect_error(), expect_warning(), expect_message(),
and expect_condition(). They assert the absence of an error, warning, or message, respectively.

Usage

expect_no_error(object, ..., message = NULL, class = NULL)

expect_no_warning(object, ..., message = NULL, class = NULL)

expect_no_message(object, ..., message = NULL, class = NULL)

expect_no_condition(object, ..., message = NULL, class = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

... These dots are for future extensions and must be empty.

message, class The default, message = NULL, class = NULL, will fail if there is any er-
ror/warning/message/condition.

16 expect_null

In many cases, particularly when testing warnings and messages, you will want
to be more specific about the condition you are hoping not to see, i.e. the con-
dition that motivated you to write the test. Similar to expect_error() and
friends, you can specify the message (a regular expression that the message of
the condition must match) and/or the class (a class the condition must inherit
from). This ensures that the message/warnings you don’t want never recur, while
allowing new messages/warnings to bubble up for you to deal with.
Note that you should only use message with errors/warnings/messages that you
generate, or that base R generates (which tend to be stable). Avoid tests that rely
on the specific text generated by another package since this can easily change.
If you do need to test text generated by another package, either protect the test
with skip_on_cran() or use expect_snapshot().

Examples

expect_no_warning(1 + 1)

foo <- function(x) {
warning("This is a problem!")

}

warning doesn't match so bubbles up:
expect_no_warning(foo(), message = "bananas")

warning does match so causes a failure:
try(expect_no_warning(foo(), message = "problem"))

expect_null Do you expect NULL?

Description

This is a special case because NULL is a singleton so it’s possible check for it either with expect_equal(x,
NULL) or expect_type(x, "NULL").

Usage

expect_null(object, info = NULL, label = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

expect_output 17

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_output(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

x <- NULL
y <- 10

expect_null(x)
show_failure(expect_null(y))

expect_output Do you expect printed output to match this pattern?

Description

Test for output produced by print() or cat(). This is best used for very simple output; for more
complex cases use expect_snapshot().

Usage

expect_output(
object,
regexp = NULL,
...,
info = NULL,
label = NULL,
width = 80

)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

regexp Regular expression to test against.

• A character vector giving a regular expression that must match the output.
• If NULL, the default, asserts that there should output, but doesn’t check for

a specific value.
• If NA, asserts that there should be no output.

... Arguments passed on to expect_match

all Should all elements of actual value match regexp (TRUE), or does only
one need to match (FALSE).

18 expect_setequal

fixed If TRUE, treats regexp as a string to be matched exactly (not a regular
expressions). Overrides perl.

perl logical. Should Perl-compatible regexps be used?

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

width Number of characters per line of output. This does not inherit from getOption("width")
so that tests always use the same output width, minimising spurious differences.

Value

The first argument, invisibly.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_reference(), expect_silent(),
inheritance-expectations, logical-expectations

Examples

str(mtcars)
expect_output(str(mtcars), "32 obs")
expect_output(str(mtcars), "11 variables")

You can use the arguments of grepl to control the matching
expect_output(str(mtcars), "11 VARIABLES", ignore.case = TRUE)
expect_output(str(mtcars), "$ mpg", fixed = TRUE)

expect_setequal Do you expect a vector containing these values?

Description

• expect_setequal(x, y) tests that every element of x occurs in y, and that every element of
y occurs in x.

• expect_contains(x, y) tests that x contains every element of y (i.e. y is a subset of x).

• expect_in(x, y) tests that every element of x is in y (i.e. x is a subset of y).

• expect_disjoint(x, y) tests that no element of x is in y (i.e. x is disjoint from y).

• expect_mapequal(x, y) treats lists as if they are mappings between names and values. Con-
cretely, checks that x and y have the same names, then checks that x[names(y)] equals y.

expect_silent 19

Usage

expect_setequal(object, expected)

expect_mapequal(object, expected)

expect_contains(object, expected)

expect_in(object, expected)

expect_disjoint(object, expected)

Arguments

object, expected
Computation and value to compare it to.
Both arguments supports limited unquoting to make it easier to generate read-
able failures within a function or for loop. See quasi_label for more details.

Details

Note that expect_setequal() ignores names, and you will be warned if both object and expected
have them.

Examples

expect_setequal(letters, rev(letters))
show_failure(expect_setequal(letters[-1], rev(letters)))

x <- list(b = 2, a = 1)
expect_mapequal(x, list(a = 1, b = 2))
show_failure(expect_mapequal(x, list(a = 1)))
show_failure(expect_mapequal(x, list(a = 1, b = "x")))
show_failure(expect_mapequal(x, list(a = 1, b = 2, c = 3)))

expect_silent Do you expect code to execute silently?

Description

Checks that the code produces no output, messages, or warnings.

Usage

expect_silent(object)

20 expect_snapshot

Arguments

object Object to test.

Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

Value

The first argument, invisibly.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
inheritance-expectations, logical-expectations

Examples

expect_silent("123")

f <- function() {
message("Hi!")
warning("Hey!!")
print("OY!!!")

}
Not run:
expect_silent(f())

End(Not run)

expect_snapshot Do you expect this code to run the same way as last time?

Description

Snapshot tests (aka golden tests) are similar to unit tests except that the expected result is stored in
a separate file that is managed by testthat. Snapshot tests are useful for when the expected value is
large, or when the intent of the code is something that can only be verified by a human (e.g. this is
a useful error message). Learn more in vignette("snapshotting").

expect_snapshot() runs code as if you had executed it at the console, and records the results,
including output, messages, warnings, and errors. If you just want to compare the result, try
expect_snapshot_value().

expect_snapshot 21

Usage

expect_snapshot(
x,
cran = FALSE,
error = FALSE,
transform = NULL,
variant = NULL,
cnd_class = FALSE

)

Arguments

x Code to evaluate.

cran Should these expectations be verified on CRAN? By default, they are not, be-
cause snapshot tests tend to be fragile because they often rely on minor details
of dependencies.

error Do you expect the code to throw an error? The expectation will fail (even on
CRAN) if an unexpected error is thrown or the expected error is not thrown.

transform Optionally, a function to scrub sensitive or stochastic text from the output. Should
take a character vector of lines as input and return a modified character vector
as output.

variant If non-NULL, results will be saved in _snaps/{variant}/{test.md}, so variant
must be a single string suitable for use as a directory name.
You can use variants to deal with cases where the snapshot output varies and you
want to capture and test the variations. Common use cases include variations for
operating system, R version, or version of key dependency. Variants are an
advanced feature. When you use them, you’ll need to carefully think about your
testing strategy to ensure that all important variants are covered by automated
tests, and ensure that you have a way to get snapshot changes out of your CI
system and back into the repo.
Note that there’s no way to declare all possible variants up front which means
that as soon as you start using variants, you are responsible for deleting snapshot
variants that are no longer used. (testthat will still delete all variants if you delete
the test.)

cnd_class Whether to include the class of messages, warnings, and errors in the snapshot.
Only the most specific class is included, i.e. the first element of class(cnd).

Workflow

The first time that you run a snapshot expectation it will run x, capture the results, and record them
in tests/testthat/_snaps/{test}.md. Each test file gets its own snapshot file, e.g. test-foo.R
will get _snaps/foo.md.

It’s important to review the Markdown files and commit them to git. They are designed to be human
readable, and you should always review new additions to ensure that the salient information has
been captured. They should also be carefully reviewed in pull requests, to make sure that snapshots
have updated in the expected way.

22 expect_snapshot_file

On subsequent runs, the result of x will be compared to the value stored on disk. If it’s different,
the expectation will fail, and a new file _snaps/{test}.new.md will be created. If the change was
deliberate, you can approve the change with snapshot_accept() and then the tests will pass the
next time you run them.

Note that snapshotting can only work when executing a complete test file (with test_file(),
test_dir(), or friends) because there’s otherwise no way to figure out the snapshot path. If you
run snapshot tests interactively, they’ll just display the current value.

expect_snapshot_file Do you expect this code to create the same file as last time?

Description

Whole file snapshot testing is designed for testing objects that don’t have a convenient textual
representation, with initial support for images (.png, .jpg, .svg), data frames (.csv), and text files
(.R, .txt, .json, ...).

The first time expect_snapshot_file() is run, it will create _snaps/{test}/{name}.{ext} con-
taining reference output. Future runs will be compared to this reference: if different, the test will
fail and the new results will be saved in _snaps/{test}/{name}.new.{ext}. To review failures,
call snapshot_review().

We generally expect this function to be used via a wrapper that takes care of ensuring that output is
as reproducible as possible, e.g. automatically skipping tests where it’s known that images can’t be
reproduced exactly.

Usage

expect_snapshot_file(
path,
name = basename(path),
binary = deprecated(),
cran = FALSE,
compare = NULL,
transform = NULL,
variant = NULL

)

announce_snapshot_file(path, name = basename(path))

compare_file_binary(old, new)

compare_file_text(old, new)

Arguments

path Path to file to snapshot. Optional for announce_snapshot_file() if name is
supplied.

expect_snapshot_file 23

name Snapshot name, taken from path by default.

binary [Deprecated] Please use the compare argument instead.

cran Should these expectations be verified on CRAN? By default, they are not, be-
cause snapshot tests tend to be fragile because they often rely on minor details
of dependencies.

compare A function used to compare the snapshot files. It should take two inputs, the
paths to the old and new snapshot, and return either TRUE or FALSE. This defaults
to compare_file_text if name has extension .r, .R, .Rmd, .md, or .txt, and
otherwise uses compare_file_binary.
compare_file_binary() compares byte-by-byte and compare_file_text()
compares lines-by-line, ignoring the difference between Windows and Mac/Linux
line endings.

transform Optionally, a function to scrub sensitive or stochastic text from the output. Should
take a character vector of lines as input and return a modified character vector
as output.

variant If not-NULL, results will be saved in _snaps/{variant}/{test}/{name}. This
allows you to create different snapshots for different scenarios, like different
operating systems or different R versions.
Note that there’s no way to declare all possible variants up front which means
that as soon as you start using variants, you are responsible for deleting snapshot
variants that are no longer used. (testthat will still delete all variants if you delete
the test.)

old, new Paths to old and new snapshot files.

Announcing snapshots

testthat automatically detects dangling snapshots that have been written to the _snaps directory but
which no longer have corresponding R code to generate them. These dangling files are automati-
cally deleted so they don’t clutter the snapshot directory.

This can cause problems if your test is conditionally executed, either because of an if statement
or a skip(). To avoid files being deleted in this case, you can call announce_snapshot_file()
before the conditional code.

test_that("can save a file", {
if (!can_save()) {
announce_snapshot_file(name = "data.txt")
skip("Can't save file")

}
path <- withr::local_tempfile()
expect_snapshot_file(save_file(path, mydata()), "data.txt")

})

Examples

To use expect_snapshot_file() you'll typically need to start by writing
a helper function that creates a file from your code, returning a path
save_png <- function(code, width = 400, height = 400) {

24 expect_snapshot_value

path <- tempfile(fileext = ".png")
png(path, width = width, height = height)
on.exit(dev.off())
code

path
}
path <- save_png(plot(1:5))
path

Not run:
expect_snapshot_file(save_png(hist(mtcars$mpg)), "plot.png")

End(Not run)

You'd then also provide a helper that skips tests where you can't
be sure of producing exactly the same output.
expect_snapshot_plot <- function(name, code) {

Announce the file before touching skips or running `code`. This way,
if the skips are active, testthat will not auto-delete the corresponding
snapshot file.
name <- paste0(name, ".png")
announce_snapshot_file(name = name)

Other packages might affect results
skip_if_not_installed("ggplot2", "2.0.0")
Or maybe the output is different on some operating systems
skip_on_os("windows")
You'll need to carefully think about and experiment with these skips

path <- save_png(code)
expect_snapshot_file(path, name)

}

expect_snapshot_value Do you expect this code to return the same value as last time?

Description

Captures the result of function, flexibly serializing it into a text representation that’s stored in a
snapshot file. See expect_snapshot() for more details on snapshot testing.

Usage

expect_snapshot_value(
x,
style = c("json", "json2", "deparse", "serialize"),
cran = FALSE,
tolerance = testthat_tolerance(),
...,

expect_success 25

variant = NULL
)

Arguments

x Code to evaluate.

style Serialization style to use:

• json uses jsonlite::fromJSON() and jsonlite::toJSON(). This pro-
duces the simplest output but only works for relatively simple objects.

• json2 uses jsonlite::serializeJSON() and jsonlite::unserializeJSON()
which are more verbose but work for a wider range of type.

• deparse uses deparse(), which generates a depiction of the object using
R code.

• serialize() produces a binary serialization of the object using serialize().
This is all but guaranteed to work for any R object, but produces a com-
pletely opaque serialization.

cran Should these expectations be verified on CRAN? By default, they are not, be-
cause snapshot tests tend to be fragile because they often rely on minor details
of dependencies.

tolerance Numerical tolerance: any differences (in the sense of base::all.equal())
smaller than this value will be ignored.
The default tolerance is sqrt(.Machine$double.eps), unless long doubles are
not available, in which case the test is skipped.

... Passed on to waldo::compare() so you can control the details of the compari-
son.

variant If non-NULL, results will be saved in _snaps/{variant}/{test.md}, so variant
must be a single string suitable for use as a directory name.
You can use variants to deal with cases where the snapshot output varies and you
want to capture and test the variations. Common use cases include variations for
operating system, R version, or version of key dependency. Variants are an
advanced feature. When you use them, you’ll need to carefully think about your
testing strategy to ensure that all important variants are covered by automated
tests, and ensure that you have a way to get snapshot changes out of your CI
system and back into the repo.
Note that there’s no way to declare all possible variants up front which means
that as soon as you start using variants, you are responsible for deleting snapshot
variants that are no longer used. (testthat will still delete all variants if you delete
the test.)

expect_success Test your custom expectations

26 expect_vector

Description

expect_success() checks that there’s exactly one success and no failures; expect_failure()
checks that there’s exactly one failure and no successes. expect_snapshot_failure() records the
failure message so that you can manually check that it is informative.

Use show_failure() in examples to print the failure message without throwing an error.

Usage

expect_success(expr)

expect_failure(expr, message = NULL, ...)

expect_snapshot_failure(expr)

show_failure(expr)

Arguments

expr Code to evaluate

message Check that the failure message matches this regexp.

... Other arguments passed on to expect_match().

expect_vector Do you expect a vector with this size and/or prototype?

Description

expect_vector() is a thin wrapper around vctrs::vec_assert(), converting the results of that
function in to the expectations used by testthat. This means that it used the vctrs of ptype (proto-
type) and size. See details in https://vctrs.r-lib.org/articles/type-size.html

Usage

expect_vector(object, ptype = NULL, size = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

ptype (Optional) Vector prototype to test against. Should be a size-0 (empty) gener-
alised vector.

size (Optional) Size to check for.

https://vctrs.r-lib.org/articles/type-size.html

extract_test 27

Examples

expect_vector(1:10, ptype = integer(), size = 10)
show_failure(expect_vector(1:10, ptype = integer(), size = 5))
show_failure(expect_vector(1:10, ptype = character(), size = 5))

extract_test Extract a reprex from a failed expectation

Description

extract_test() creates a minimal reprex for a failed expectation. It extracts all non-test code
before the failed expectation as well as all code inside the test up to and including the failed expec-
tation.

This is particularly useful when you’re debugging test failures in someone else’s package.

Usage

extract_test(location, path = stdout(), package = Sys.getenv("TESTTHAT_PKG"))

Arguments

location A string giving the location in the form FILE:LINE[:COLUMN].

path Path to write the reprex to. Defaults to stdout().

package If supplied, will be used to construct a test environment for the extracted code.

Value

This function is called for its side effect of rendering a reprex to path. This function will never
error: if extraction fails, the error message will be written to path.

Examples

If you see a test failure like this:
-- Failure (test-extract.R:46:3): errors if can't find test -------------
Expected FALSE to be TRUE.
Differences:
`actual`: FALSE
`expected`: TRUE

You can run this:
Not run: extract_test("test-extract.R:46:3")
to see just the code needed to reproduce the failure

28 fail

fail Declare that an expectation either passes or fails

Description

These are the primitives that you can use to implement your own expectations. Every path through
an expectation should either call pass(), fail(), or throw an error (e.g. if the arguments are
invalid). Expectations should always return invisible(act$val).

Learn more about creating your own expectations in vignette("custom-expectation").

Usage

fail(
message = "Failure has been forced",
info = NULL,
srcref = NULL,
trace_env = caller_env(),
trace = NULL

)

pass()

Arguments

message A character vector describing the failure. The first element should describe the
expected value, and the second (and optionally subsequence) elements should
describe what was actually seen.

info Character vector continuing additional information. Included for backward com-
patibility only and new expectations should not use it.

srcref Location of the failure. Should only needed to be explicitly supplied when you
need to forward a srcref captured elsewhere.

trace_env If trace is not specified, this is used to generate an informative traceback for
failures. You should only need to set this if you’re calling fail() from a helper
function; see vignette("custom-expectation") for details.

trace An optional backtrace created by rlang::trace_back(). When supplied, the
expectation is displayed with the backtrace. Expert use only.

Examples

expect_length <- function(object, n) {
act <- quasi_label(rlang::enquo(object), arg = "object")

act_n <- length(act$val)
if (act_n != n) {

fail(sprintf("%s has length %i, not length %i.", act$lab, act_n, n))
} else {

FailReporter 29

pass()
}

invisible(act$val)
}

FailReporter Fail if any tests fail

Description

This reporter will simply throw an error if any of the tests failed. It is best combined with another
reporter, such as the SummaryReporter.

See Also

Other reporters: CheckReporter, DebugReporter, JunitReporter, ListReporter, LlmReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter,
TeamcityReporter

inheritance-expectations

Do you expect an S3/S4/R6/S7 object that inherits from this class?

Description

See https://adv-r.hadley.nz/oo.html for an overview of R’s OO systems, and the vocabulary
used here.

• expect_type(x, type) checks that typeof(x) is type.

• expect_s3_class(x, class) checks that x is an S3 object that inherits() from class

• expect_s3_class(x, NA) checks that x isn’t an S3 object.

• expect_s4_class(x, class) checks that x is an S4 object that is() class.

• expect_s4_class(x, NA) checks that x isn’t an S4 object.

• expect_r6_class(x, class) checks that x an R6 object that inherits from class.

• expect_s7_class(x, Class) checks that x is an S7 object that S7::S7_inherits() from
Class

See expect_vector() for testing properties of objects created by vctrs.

https://adv-r.hadley.nz/oo.html

30 inheritance-expectations

Usage

expect_type(object, type)

expect_s3_class(object, class, exact = FALSE)

expect_s4_class(object, class)

expect_r6_class(object, class)

expect_s7_class(object, class)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

type String giving base type (as returned by typeof()).

class The required type varies depending on the function:

• expect_type(): a string.
• expect_s3_class(): a string or character vector. The behaviour of multi-

ple values (i.e. a character vector) is controlled by the exact argument.
• expect_s4_class(): a string.
• expect_r6_class(): a string.
• expect_s7_class(): an S7::S7_class() object.

For historical reasons, expect_s3_class() and expect_s4_class() also take
NA to assert that the object is not an S3 or S4 object.

exact If FALSE, the default, checks that object inherits from any element of class. If
TRUE, checks that object has a class that exactly matches class.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
expect_silent(), logical-expectations

Examples

x <- data.frame(x = 1:10, y = "x", stringsAsFactors = TRUE)
A data frame is an S3 object with class data.frame
expect_s3_class(x, "data.frame")
show_failure(expect_s4_class(x, "data.frame"))
A data frame is built from a list:
expect_type(x, "list")

f <- factor(c("a", "b", "c"))
o <- ordered(f)

is_testing 31

Using multiple class names tests if the object inherits from any of them
expect_s3_class(f, c("ordered", "factor"))
Use exact = TRUE to test for exact match
show_failure(expect_s3_class(f, c("ordered", "factor"), exact = TRUE))
expect_s3_class(o, c("ordered", "factor"), exact = TRUE)

An integer vector is an atomic vector of type "integer"
expect_type(x$x, "integer")
It is not an S3 object
show_failure(expect_s3_class(x$x, "integer"))

Above, we requested data.frame() converts strings to factors:
show_failure(expect_type(x$y, "character"))
expect_s3_class(x$y, "factor")
expect_type(x$y, "integer")

is_testing Determine testing status

Description

These functions help you determine if you code is running in a particular testing context:

• is_testing() is TRUE inside a test.

• is_snapshot() is TRUE inside a snapshot test

• is_checking() is TRUE inside of R CMD check (i.e. by test_check()).

• is_parallel() is TRUE if the tests are run in parallel.

• testing_package() gives name of the package being tested.

A common use of these functions is to compute a default value for a quiet argument with is_testing()
&& !is_snapshot(). In this case, you’ll want to avoid an run-time dependency on testthat, in which
case you should just copy the implementation of these functions into a utils.R or similar.

Usage

is_testing()

is_parallel()

is_checking()

is_snapshot()

testing_package()

32 ListReporter

JunitReporter Report results in jUnit XML format

Description

This reporter includes detailed results about each test and summaries, written to a file (or stdout) in
jUnit XML format. This can be read by the Jenkins Continuous Integration System to report on a
dashboard etc. Requires the xml2 package.

To fit into the jUnit structure, context() becomes the <testsuite> name as well as the base of the
<testcase> classname. The test_that() name becomes the rest of the <testcase> classname.
The deparsed expect_that() call becomes the <testcase> name. On failure, the message goes
into the <failure> node message argument (first line only) and into its text content (full message).
Execution time and some other details are also recorded.

References for the jUnit XML format: https://github.com/testmoapp/junitxml

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, ListReporter, LlmReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter,
TeamcityReporter

ListReporter Capture test results and metadata

Description

This reporter gathers all results, adding additional information such as test elapsed time, and test
filename if available. Very useful for reporting.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, LlmReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter,
TeamcityReporter

https://github.com/testmoapp/junitxml

LlmReporter 33

LlmReporter Report test progress for LLMs

Description

LlmReporter is designed for use with Large Language Models (LLMs). It reports problems (warn-
ings, skips, errors, and failures) as they occur and the total number of successes at the end.

LlmReporter is used by default when tests are run by a coding agent. Currently we detect Claude
Code, Cursor, and Gemini CLI. If using another tool, configure it to set env var AGENT=1.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter,
TeamcityReporter

local_edition Temporarily change the active testthat edition

Description

local_edition() allows you to temporarily (within a single test or a single test file) change the
active edition of testthat. edition_get() allows you to retrieve the currently active edition.

Usage

local_edition(x, .env = parent.frame())

edition_get()

Arguments

x Edition Should be a single integer.

.env Environment that controls scope of changes. For expert use only.

34 local_mocked_bindings

local_mocked_bindings Temporarily redefine function definitions

Description

with_mocked_bindings() and local_mocked_bindings() provide tools for "mocking", tem-
porarily redefining a function so that it behaves differently during tests. This is helpful for testing
functions that depend on external state (i.e. reading a value from a file or a website, or pretending a
package is or isn’t installed).

Learn more in vignette("mocking").

Usage

local_mocked_bindings(..., .package = NULL, .env = caller_env())

with_mocked_bindings(code, ..., .package = NULL)

Arguments

... Name-value pairs providing new values (typically functions) to temporarily re-
place the named bindings.

.package The name of the package where mocked functions should be inserted. Gener-
ally, you should not supply this as it will be automatically detected when whole
package tests are run or when there’s one package under active development
(i.e. loaded with pkgload::load_all()). We don’t recommend using this to
mock functions in other packages, as you should not modify namespaces that
you don’t own.

.env Environment that defines effect scope. For expert use only.

code Code to execute with specified bindings.

Use

There are four places that the function you are trying to mock might come from:

• Internal to your package.

• Imported from an external package via the NAMESPACE.

• The base environment.

• Called from an external package with ::.

They are described in turn below.

(To mock S3 & S4 methods and R6 classes see local_mocked_s3_method(), local_mocked_s4_method(),
and local_mocked_r6_class().)

Internal & imported functions:
You mock internal and imported functions the same way. For example, take this code:

local_mocked_bindings 35

some_function <- function() {
another_function()

}

It doesn’t matter whether another_function() is defined by your package or you’ve imported it
from a dependency with @import or @importFrom, you mock it the same way:

local_mocked_bindings(
another_function = function(...) "new_value"

)

Base functions:
To mock a function in the base package, you need to make sure that you have a binding for this
function in your package. It’s easiest to do this by binding the value to NULL. For example, if you
wanted to mock interactive() in your package, you’d need to include this code somewhere in
your package:

interactive <- NULL

Why is this necessary? with_mocked_bindings() and local_mocked_bindings() work by
temporarily modifying the bindings within your package’s namespace. When these tests are run-
ning inside of R CMD check the namespace is locked which means it’s not possible to create new
bindings so you need to make sure that the binding exists already.

Namespaced calls:
It’s trickier to mock functions in other packages that you call with ::. For example, take this
minor variation:

some_function <- function() {
anotherpackage::another_function()

}

To mock this function, you’d need to modify another_function() inside the anotherpackage
package. You can do this by supplying the .package argument to local_mocked_bindings()
but we don’t recommend it because it will affect all calls to anotherpackage::another_function(),
not just the calls originating in your package. Instead, it’s safer to either import the function into
your package, or make a wrapper that you can mock:

some_function <- function() {
my_wrapper()

}
my_wrapper <- function(...) {
anotherpackage::another_function(...)

}

local_mocked_bindings(
my_wrapper = function(...) "new_value"

)

Multiple return values / sequence of outputs:
To mock a function that returns different values in sequence, for instance an API call whose status
would be 502 then 200, or an user input to readline(), you can use mock_output_sequence()

local_mocked_bindings(readline = mock_output_sequence("3", "This is a note", "n"))

36 local_mocked_s3_method

See Also

Other mocking: mock_output_sequence()

local_mocked_r6_class Mock an R6 class

Description

This function allows you to temporarily override an R6 class definition. It works by creating a
subclass then using local_mocked_bindings() to temporarily replace the original definition. This
means that it will not affect subclasses of the original class; please file an issue if you need this.

Learn more about mocking in vignette("mocking").

Usage

local_mocked_r6_class(
class,
public = list(),
private = list(),
frame = caller_env()

)

Arguments

class An R6 class definition.

public, private A named list of public and private methods/data.

frame Calling frame which determines the scope of the mock. Only needed when
wrapping in another local helper.

local_mocked_s3_method

Mock S3 and S4 methods

Description

These functions temporarily override S3 or S4 methods. They can mock methods that don’t already
exist, or temporarily remove a method by setting definition = NULL.

Learn more about mocking in vignette("mocking").

Usage

local_mocked_s3_method(generic, signature, definition, frame = caller_env())

local_mocked_s4_method(generic, signature, definition, frame = caller_env())

local_test_context 37

Arguments

generic A string giving the name of the generic.

signature A character vector giving the signature of the method.

definition A function providing the method definition, or NULL to temporarily remove the
method.

frame Calling frame which determines the scope of the mock. Only needed when
wrapping in another local helper.

Examples

x <- as.POSIXlt(Sys.time())
local({

local_mocked_s3_method("length", "POSIXlt", function(x) 42)
length(x)

})

length(x)

local_test_context Temporarily set options for maximum reproducibility

Description

local_test_context() is run automatically by test_that() but you may want to run it yourself
if you want to replicate test results interactively. If run inside a function, the effects are automatically
reversed when the function exits; if running in the global environment, use withr::deferred_run()
to undo.

local_reproducible_output() is run automatically by test_that() in the 3rd edition. You
might want to call it to override the the default settings inside a test, if you want to test Unicode,
coloured output, or a non-standard width.

Usage

local_test_context(.env = parent.frame())

local_reproducible_output(
width = 80,
crayon = FALSE,
unicode = FALSE,
rstudio = FALSE,
hyperlinks = FALSE,
lang = "C",
.env = parent.frame()

)

38 local_test_context

Arguments

.env Environment to use for scoping; expert use only.

width Value of the "width" option.

crayon Determines whether or not crayon (now cli) colour should be applied.

unicode Value of the "cli.unicode" option. The test is skipped if l10n_info()$`UTF-8`
is FALSE.

rstudio Should we pretend that we’re inside of RStudio?

hyperlinks Should we use ANSI hyperlinks.

lang Optionally, supply a BCP47 language code to set the language used for trans-
lating error messages. This is a lower case two letter ISO 639 country code,
optionally followed by "_" or "-" and an upper case two letter ISO 3166 region
code.

Details

local_test_context() sets TESTTHAT = "true", which ensures that is_testing() returns TRUE
and allows code to tell if it is run by testthat.

In the third edition, local_test_context() also calls local_reproducible_output() which
temporary sets the following options:

• cli.dynamic = FALSE so that tests assume that they are not run in a dynamic console (i.e. one
where you can move the cursor around).

• cli.unicode (default: FALSE) so that the cli package never generates unicode output (nor-
mally cli uses unicode on Linux/Mac but not Windows). Windows can’t easily save unicode
output to disk, so it must be set to false for consistency.

• cli.condition_width = Inf so that new lines introduced while width-wrapping condition
messages don’t interfere with message matching.

• crayon.enabled (default: FALSE) suppresses ANSI colours generated by the cli and crayon
packages (normally colours are used if cli detects that you’re in a terminal that supports
colour).

• cli.num_colors (default: 1L) Same as the crayon option.

• lifecycle_verbosity = "warning" so that every lifecycle problem always generates a warn-
ing (otherwise deprecated functions don’t generate a warning every time).

• max.print = 99999 so the same number of values are printed.

• OutDec = "." so numbers always uses . as the decimal point (European users sometimes set
OutDec = ",").

• rlang_interactive = FALSE so that rlang::is_interactive() returns FALSE, and code
that uses it pretends you’re in a non-interactive environment.

• useFancyQuotes = FALSE so base R functions always use regular (straight) quotes (otherwise
the default is locale dependent, see sQuote() for details).

• width (default: 80) to control the width of printed output (usually this varies with the size of
your console).

And modifies the following env vars:

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-2
https://en.wikipedia.org/wiki/ISO_3166-2

LocationReporter 39

• Unsets RSTUDIO, which ensures that RStudio is never detected as running.

• Sets LANGUAGE = "en", which ensures that no message translation occurs.

Finally, it sets the collation locale to "C", which ensures that character sorting the same regardless
of system locale.

Examples

local({
local_test_context()
cat(cli::col_blue("Text will not be colored"))
cat(cli::symbol$ellipsis)
cat("\n")

})
test_that("test ellipsis", {

local_reproducible_output(unicode = FALSE)
expect_equal(cli::symbol$ellipsis, "...")

local_reproducible_output(unicode = TRUE)
expect_equal(cli::symbol$ellipsis, "\u2026")

})

LocationReporter Test reporter: location

Description

This reporter simply prints the location of every expectation and error. This is useful if you’re
trying to figure out the source of a segfault, or you want to figure out which code triggers a C/C++
breakpoint

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter,
SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter, TeamcityReporter

logical-expectations Do you expect TRUE or FALSE?

Description

These are fall-back expectations that you can use when none of the other more specific expectations
apply. The disadvantage is that you may get a less informative error message.

Attributes are ignored.

40 MinimalReporter

Usage

expect_true(object, info = NULL, label = NULL)

expect_false(object, info = NULL, label = NULL)

Arguments

object Object to test.
Supports limited unquoting to make it easier to generate readable failures within
a function or for loop. See quasi_label for more details.

info Extra information to be included in the message. This argument is soft-deprecated
and should not be used in new code. Instead see alternatives in quasi_label.

label Used to customise failure messages. For expert use only.

See Also

Other expectations: comparison-expectations, equality-expectations, expect_error(), expect_length(),
expect_match(), expect_named(), expect_null(), expect_output(), expect_reference(),
expect_silent(), inheritance-expectations

Examples

expect_true(2 == 2)
Failed expectations will throw an error
show_failure(expect_true(2 != 2))

where possible, use more specific expectations, to get more informative
error messages
a <- 1:4
show_failure(expect_true(length(a) == 3))
show_failure(expect_equal(length(a), 3))

x <- c(TRUE, TRUE, FALSE, TRUE)
show_failure(expect_true(all(x)))
show_failure(expect_all_true(x))

MinimalReporter Report minimal results as compactly as possible

Description

The minimal test reporter provides the absolutely minimum amount of information: whether each
expectation has succeeded, failed or experienced an error. If you want to find out what the failures
and errors actually were, you’ll need to run a more informative test reporter.

mock_output_sequence 41

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MultiReporter, ProgressReporter, RStudioReporter, Reporter,
SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter, TeamcityReporter

mock_output_sequence Mock a sequence of output from a function

Description

Specify multiple return values for mocking

Usage

mock_output_sequence(..., recycle = FALSE)

Arguments

... <dynamic-dots> Values to return in sequence.

recycle whether to recycle. If TRUE, once all values have been returned, they will be
returned again in sequence.

Value

A function that you can use within local_mocked_bindings() and with_mocked_bindings()

See Also

Other mocking: local_mocked_bindings()

Examples

inside local_mocked_bindings()
Not run:
local_mocked_bindings(readline = mock_output_sequence("3", "This is a note", "n"))

End(Not run)
for understanding
mocked_sequence <- mock_output_sequence("3", "This is a note", "n")
mocked_sequence()
mocked_sequence()
mocked_sequence()
try(mocked_sequence())
recycled_mocked_sequence <- mock_output_sequence(

"3", "This is a note", "n",
recycle = TRUE

)
recycled_mocked_sequence()

42 ProgressReporter

recycled_mocked_sequence()
recycled_mocked_sequence()
recycled_mocked_sequence()

MultiReporter Run multiple reporters at the same time

Description

This reporter is useful to use several reporters at the same time, e.g. adding a custom reporter
without removing the current one.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MinimalReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter,
TeamcityReporter

ProgressReporter Report progress interactively

Description

ProgressReporter is designed for interactive use. Its goal is to give you actionable insights to help
you understand the status of your code. This reporter also praises you from time-to-time if all your
tests pass. It’s the default reporter for test_dir().

ParallelProgressReporter is very similar to ProgressReporter, but works better for packages
that want parallel tests.

CompactProgressReporter is a minimal version of ProgressReporter designed for use with
single files. It’s the default reporter for test_file().

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MinimalReporter, MultiReporter, RStudioReporter, Reporter,
SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter, TeamcityReporter

RStudioReporter 43

RStudioReporter Report results to RStudio

Description

This reporter is designed for output to RStudio. It produces results in any easily parsed form.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, Reporter,
SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter, TeamcityReporter

set_state_inspector Check for global state changes

Description

One of the most pernicious challenges to debug is when a test runs fine in your test suite, but fails
when you run it interactively (or similarly, it fails randomly when running your tests in parallel).
One of the most common causes of this problem is accidentally changing global state in a previous
test (e.g. changing an option, an environment variable, or the working directory). This is hard to
debug, because it’s very hard to figure out which test made the change.

Luckily testthat provides a tool to figure out if tests are changing global state. You can regis-
ter a state inspector with set_state_inspector() and testthat will run it before and after each
test, store the results, then report if there are any differences. For example, if you wanted to see
if any of your tests were changing options or environment variables, you could put this code in
tests/testthat/helper-state.R:

set_state_inspector(function() {
list(
options = options(),
envvars = Sys.getenv()

)
})

(You might discover other packages outside your control are changing the global state, in which
case you might want to modify this function to ignore those values.)

Other problems that can be troublesome to resolve are CRAN check notes that report things like
connections being left open. You can easily debug that problem with:

set_state_inspector(function() {
getAllConnections()

})

44 skip

Usage

set_state_inspector(callback, tolerance = testthat_tolerance())

Arguments

callback Either a zero-argument function that returns an object capturing global state that
you’re interested in, or NULL.

tolerance If non-NULL, used as threshold for ignoring small floating point difference when
comparing numeric vectors. Using any non-NULL value will cause integer and
double vectors to be compared based on their values, not their types, and will
ignore the difference between NaN and NA_real_.
It uses the same algorithm as all.equal(), i.e., first we generate x_diff and
y_diff by subsetting x and y to look only locations with differences. Then
we check that mean(abs(x_diff - y_diff)) / mean(abs(y_diff)) (or just
mean(abs(x_diff - y_diff)) if y_diff is small) is less than tolerance.

SilentReporter Silently collect and all expectations

Description

This reporter quietly runs all tests, simply gathering all expectations. This is helpful for program-
matically inspecting errors after a test run. You can retrieve the results with $expectations().

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SlowReporter, StopReporter, SummaryReporter, TapReporter, TeamcityReporter

skip Skip a test for various reasons

Description

skip_if() and skip_if_not() allow you to skip tests, immediately concluding a test_that()
block without executing any further expectations. This allows you to skip a test without failure, if
for some reason it can’t be run (e.g. it depends on the feature of a specific operating system, or it
requires a specific version of a package).

See vignette("skipping") for more details.

skip 45

Usage

skip(message = "Skipping")

skip_if_not(condition, message = NULL)

skip_if(condition, message = NULL)

skip_if_not_installed(pkg, minimum_version = NULL)

skip_unless_r(spec)

skip_if_offline(host = "captive.apple.com")

skip_on_cran()

local_on_cran(on_cran = TRUE, frame = caller_env())

skip_on_os(os, arch = NULL)

skip_on_ci()

skip_on_covr()

skip_on_bioc()

skip_if_translated(msgid = "'%s' not found")

Arguments

message A message describing why the test was skipped.

condition Boolean condition to check. skip_if_not() will skip if FALSE, skip_if() will
skip if TRUE.

pkg Name of package to check for
minimum_version

Minimum required version for the package

spec A version specification like ’>= 4.1.0’ denoting that this test should only be run
on R versions 4.1.0 and later.

host A string with a hostname to lookup

on_cran Pretend we’re on CRAN (TRUE) or not (FALSE).

frame Calling frame to tie change to; expect use only.

os Character vector of one or more operating systems to skip on. Supported values
are "windows", "mac", "linux", "solaris", and "emscripten".

arch Character vector of one or more architectures to skip on. Common values in-
clude "i386" (32 bit), "x86_64" (64 bit), and "aarch64" (M1 mac). Supplying
arch makes the test stricter; i.e. both os and arch must match in order for the
test to be skipped.

46 SlowReporter

msgid R message identifier used to check for translation: the default uses a message
included in most translation packs. See the complete list in R-base.pot.

Helpers

• skip_if_not_installed("pkg") skips tests if package "pkg" is not installed or cannot be
loaded (using requireNamespace()). Generally, you can assume that suggested packages
are installed, and you do not need to check for them specifically, unless they are particularly
difficult to install.

• skip_if_offline() skips if an internet connection is not available (using curl::nslookup())
or if the test is run on CRAN. Requires {curl} to be installed and included in the dependencies
of your package.

• skip_if_translated("msg") skips tests if the "msg" is translated.

• skip_on_bioc() skips on Bioconductor (using the IS_BIOC_BUILD_MACHINE env var).

• skip_on_cran() skips on CRAN (using the NOT_CRAN env var set by devtools and friends).
local_on_cran() gives you the ability to easily simulate what will happen on CRAN.

• skip_on_covr() skips when covr is running (using the R_COVR env var).

• skip_on_ci() skips on continuous integration systems like GitHub Actions, travis, and ap-
pveyor (using the CI env var).

• skip_on_os() skips on the specified operating system(s) ("windows", "mac", "linux", or "so-
laris").

Examples

if (FALSE) skip("Some Important Requirement is not available")

test_that("skip example", {
expect_equal(1, 1L) # this expectation runs
skip('skip')
expect_equal(1, 2) # this one skipped
expect_equal(1, 3) # this one is also skipped

})

SlowReporter Find slow tests

Description

SlowReporter is designed to identify slow tests. It reports the execution time for each test and can
optionally filter out tests that run faster than a specified threshold (default: 1 second). This reporter
is useful for performance optimization and identifying tests that may benefit from optimization or
parallelization.

SlowReporter is designed to identify slow tests. It reports the execution time for each test, ignoring
tests faster than a specified threshold (default: 0.5s).

The easiest way to run it over your package is with devtools::test(reporter = "slow").

https://github.com/wch/r-source/blob/master/src/library/base/po/R-base.pot

snapshot_accept 47

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, StopReporter, SummaryReporter, TapReporter, TeamcityReporter

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, StopReporter, SummaryReporter, TapReporter, TeamcityReporter

snapshot_accept Accept or reject modified snapshots

Description

• snapshot_accept() accepts all modified snapshots.

• snapshot_reject() rejects all modified snapshots by deleting the .new variants.

• snapshot_review() opens a Shiny app that shows a visual diff of each modified snapshot.
This is particularly useful for whole file snapshots created by expect_snapshot_file().

Usage

snapshot_accept(files = NULL, path = "tests/testthat")

snapshot_reject(files = NULL, path = "tests/testthat")

snapshot_review(files = NULL, path = "tests/testthat", ...)

Arguments

files Optionally, filter effects to snapshots from specified files. This can be a snapshot
name (e.g. foo or foo.md), a snapshot file name (e.g. testfile/foo.txt), or
a snapshot file directory (e.g. testfile/).

path Path to tests.

... Additional arguments passed on to shiny::runApp().

48 StopReporter

snapshot_download_gh Download snapshots from GitHub

Description

If your snapshots fail on GitHub, it can be a pain to figure out exactly why, or to incorporate them
into your local package. This function makes it easy, only requiring you to interactively select
which job you want to take the artifacts from.

Note that you should not generally need to use this function manually; instead copy and paste from
the hint emitted on GitHub. This hint is only emitted when running in a job named "R-CMD-check",
since that’s where the testthat artifact is typically uploaded.

Usage

snapshot_download_gh(repository, run_id, dest_dir = ".")

Arguments

repository Repository owner/name, e.g. "r-lib/testthat".

run_id Run ID, e.g. "47905180716". You can find this in the action url.

dest_dir Package root directory. Defaults to the current directory.

StopReporter Error if any test fails

Description

The default reporter used when expect_that() is run interactively. It responds by displaying a
summary of the number of successes and failures and stop()ping on if there are any failures.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, SummaryReporter, TapReporter, TeamcityReporter

SummaryReporter 49

SummaryReporter Report a summary of failures

Description

This is designed for interactive usage: it lets you know which tests have run successfully and as
well as fully reporting information about failures and errors.

You can use the max_reports field to control the maximum number of detailed reports produced
by this reporter.

As an additional benefit, this reporter will praise you from time-to-time if all your tests pass.

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, StopReporter, TapReporter, TeamcityReporter

TapReporter Report results in TAP format

Description

This reporter will output results in the Test Anything Protocol (TAP), a simple text-based interface
between testing modules in a test harness. For more information about TAP, see http://testanything.org

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, StopReporter, SummaryReporter, TeamcityReporter

TeamcityReporter Report results in Teamcity format

Description

This reporter will output results in the Teamcity message format. For more information about Team-
city messages, see http://confluence.jetbrains.com/display/TCD7/Build+Script+Interaction+with+TeamCity

See Also

Other reporters: CheckReporter, DebugReporter, FailReporter, JunitReporter, ListReporter,
LlmReporter, LocationReporter, MinimalReporter, MultiReporter, ProgressReporter, RStudioReporter,
Reporter, SilentReporter, SlowReporter, StopReporter, SummaryReporter, TapReporter

50 test_dir

teardown_env Run code after all test files

Description

This environment has no purpose other than as a handle for withr::defer(): use it when you
want to run code after all tests have been run. Typically, you’ll use withr::defer(cleanup(),
teardown_env()) immediately after you’ve made a mess in a setup-*.R file.

Usage

teardown_env()

test_dir Run all tests in a directory

Description

This function is the low-level workhorse that powers test_local() and test_package(). Gener-
ally, you should not call this function directly. In particular, you are responsible for ensuring that
the functions to test are available in the test env (e.g. via load_package).

See vignette("special-files") to learn more about the conventions for test, helper, and setup
files that testthat uses, and what you might use each for.

Usage

test_dir(
path,
filter = NULL,
reporter = NULL,
env = NULL,
...,
load_helpers = TRUE,
stop_on_failure = TRUE,
stop_on_warning = FALSE,
package = NULL,
load_package = c("none", "installed", "source"),
shuffle = FALSE

)

test_file 51

Arguments

path Path to directory containing tests.

filter If not NULL, only tests with file names matching this regular expression will be
executed. Matching is performed on the file name after it’s stripped of "test-"
and ".R".

reporter Reporter to use to summarise output. Can be supplied as a string (e.g. "sum-
mary") or as an R6 object (e.g. SummaryReporter$new()).
See Reporter for more details and a list of built-in reporters.

env Environment in which to execute the tests. Expert use only.

... Additional arguments passed to grepl() to control filtering.

load_helpers Source helper files before running the tests?
stop_on_failure

If TRUE, throw an error if any tests fail.
stop_on_warning

If TRUE, throw an error if any tests generate warnings.

package If these tests belong to a package, the name of the package.

load_package Strategy to use for load package code:

• "none", the default, doesn’t load the package.
• "installed", uses library() to load an installed package.
• "source", uses pkgload::load_all() to a source package. To configure

the arguments passed to load_all(), add this field in your DESCRIPTION
file:

Config/testthat/load-all: list(export_all = FALSE, helpers = FALSE)

shuffle If TRUE, randomly reorder the top-level expressions in the file.

Value

A list (invisibly) containing data about the test results.

Environments

Each test is run in a clean environment to keep tests as isolated as possible. For package tests, that
environment inherits from the package’s namespace environment, so that tests can access internal
functions and objects.

test_file Run tests in a single file

Description

Helper, setup, and teardown files located in the same directory as the test will also be run. See
vignette("special-files") for details.

52 test_file

Usage

test_file(
path,
reporter = default_compact_reporter(),
desc = NULL,
package = NULL,
shuffle = FALSE,
...

)

Arguments

path Path to file.

reporter Reporter to use to summarise output. Can be supplied as a string (e.g. "sum-
mary") or as an R6 object (e.g. SummaryReporter$new()).

See Reporter for more details and a list of built-in reporters.

desc Optionally, supply a string here to run only a single test (test_that() or describe())
with this description.

package If these tests belong to a package, the name of the package.

shuffle If TRUE, randomly reorder the top-level expressions in the file.

... Additional parameters passed on to test_dir()

Value

A list (invisibly) containing data about the test results.

Environments

Each test is run in a clean environment to keep tests as isolated as possible. For package tests, that
environment inherits from the package’s namespace environment, so that tests can access internal
functions and objects.

Examples

path <- testthat_example("success")
test_file(path)
test_file(path, desc = "some tests have warnings")
test_file(path, reporter = "minimal")

test_package 53

test_package Run all tests in a package

Description

• test_local() tests a local source package.

• test_package() tests an installed package.

• test_check() checks a package during R CMD check.

See vignette("special-files") to learn about the various files that testthat works with.

Usage

test_package(package, reporter = check_reporter(), ...)

test_check(package, reporter = check_reporter(), ...)

test_local(
path = ".",
reporter = NULL,
...,
load_package = "source",
shuffle = FALSE

)

Arguments

package If these tests belong to a package, the name of the package.

reporter Reporter to use to summarise output. Can be supplied as a string (e.g. "sum-
mary") or as an R6 object (e.g. SummaryReporter$new()).
See Reporter for more details and a list of built-in reporters.

... Additional arguments passed to test_dir()

path Path to directory containing tests.

load_package Strategy to use for load package code:

• "none", the default, doesn’t load the package.
• "installed", uses library() to load an installed package.
• "source", uses pkgload::load_all() to a source package. To configure

the arguments passed to load_all(), add this field in your DESCRIPTION
file:
Config/testthat/load-all: list(export_all = FALSE, helpers = FALSE)

shuffle If TRUE, randomly reorder the top-level expressions in the file.

Value

A list (invisibly) containing data about the test results.

54 test_path

R CMD check

To run testthat automatically from R CMD check, make sure you have a tests/testthat.R that
contains:

library(testthat)
library(yourpackage)

test_check("yourpackage")

Environments

Each test is run in a clean environment to keep tests as isolated as possible. For package tests, that
environment inherits from the package’s namespace environment, so that tests can access internal
functions and objects.

test_path Locate a file in the testing directory

Description

Many tests require some external file (e.g. a .csv if you’re testing a data import function) but
the working directory varies depending on the way that you’re running the test (e.g. interactively,
with devtools::test(), or with R CMD check). test_path() understands these variations and
automatically generates a path relative to tests/testthat, regardless of where that directory might
reside relative to the current working directory.

Usage

test_path(...)

Arguments

... Character vectors giving path components.

Value

A character vector giving the path.

Examples

Not run:
test_path("foo.csv")
test_path("data", "foo.csv")

End(Not run)

test_that 55

test_that Run a test

Description

A test encapsulates a series of expectations about a small, self-contained unit of functionality. Each
test contains one or more expectations, such as expect_equal() or expect_error(), and lives in
a test/testhat/test* file, often together with other tests that relate to the same function or set of
functions.

Each test has its own execution environment, so an object created in a test also dies with the test.
Note that this cleanup does not happen automatically for other aspects of global state, such as
session options or filesystem changes. Avoid changing global state, when possible, and reverse any
changes that you do make.

Usage

test_that(desc, code)

Arguments

desc Test name. Names should be brief, but evocative. It’s common to write the de-
scription so that it reads like a natural sentence, e.g. test_that("multiplication
works", { ... }).

code Test code containing expectations. Braces ({}) should always be used in order
to get accurate location data for test failures.

Value

When run interactively, returns invisible(TRUE) if all tests pass, otherwise throws an error.

Examples

test_that("trigonometric functions match identities", {
expect_equal(sin(pi / 4), 1 / sqrt(2))
expect_equal(cos(pi / 4), 1 / sqrt(2))
expect_equal(tan(pi / 4), 1)

})

Not run:
test_that("trigonometric functions match identities", {

expect_equal(sin(pi / 4), 1)
})

End(Not run)

56 use_catch

try_again Evaluate an expectation multiple times until it succeeds

Description

If you have a flaky test, you can use try_again() to run it a few times until it succeeds. In most
cases, you are better fixing the underlying cause of the flakeyness, but sometimes that’s not possible.

Usage

try_again(times, code)

Arguments

times Number of times to retry.

code Code to evaluate.

Examples

usually_return_1 <- function(i) {
if (runif(1) < 0.1) 0 else 1

}

Not run:
10% chance of failure:
expect_equal(usually_return_1(), 1)

1% chance of failure:
try_again(1, expect_equal(usually_return_1(), 1))

0.1% chance of failure:
try_again(2, expect_equal(usually_return_1(), 1))

End(Not run)

use_catch Use Catch for C++ unit testing

Description

Add the necessary infrastructure to enable C++ unit testing in R packages with Catch and testthat.

Usage

use_catch(dir = getwd())

https://github.com/catchorg/Catch2

use_catch 57

Arguments

dir The directory containing an R package.

Details

Calling use_catch() will:

1. Create a file src/test-runner.cpp, which ensures that the testthat package will under-
stand how to run your package’s unit tests,

2. Create an example test file src/test-example.cpp, which showcases how you might use
Catch to write a unit test,

3. Add a test file tests/testthat/test-cpp.R, which ensures that testthat will run your
compiled tests during invocations of devtools::test() or R CMD check, and

4. Create a file R/catch-routine-registration.R, which ensures that R will automatically
register this routine when tools::package_native_routine_registration_skeleton()
is invoked.

You will also need to:

• Add xml2 to Suggests, with e.g. usethis::use_package("xml2", "Suggests")

• Add testthat to LinkingTo, with e.g. usethis::use_package("testthat", "LinkingTo")

C++ unit tests can be added to C++ source files within the src directory of your package, with a
format similar to R code tested with testthat. Here’s a simple example of a unit test written with
testthat + Catch:

context("C++ Unit Test") {
test_that("two plus two is four") {
int result = 2 + 2;
expect_true(result == 4);

}
}

When your package is compiled, unit tests alongside a harness for running these tests will be com-
piled into your R package, with the C entry point run_testthat_tests(). testthat will use that
entry point to run your unit tests when detected.

Functions

All of the functions provided by Catch are available with the CATCH_ prefix – see here for a full list.
testthat provides the following wrappers, to conform with testthat’s R interface:

Function Catch Description
context CATCH_TEST_CASE The context of a set of tests.
test_that CATCH_SECTION A test section.
expect_true CATCH_CHECK Test that an expression evaluates to TRUE.
expect_false CATCH_CHECK_FALSE Test that an expression evaluates to FALSE.
expect_error CATCH_CHECK_THROWS Test that evaluation of an expression throws an exception.

https://github.com/catchorg/Catch2/blob/master/docs/assertions.md

58 use_catch

expect_error_as CATCH_CHECK_THROWS_AS Test that evaluation of an expression throws an exception of a specific class.

In general, you should prefer using the testthat wrappers, as testthat also does some work to
ensure that any unit tests within will not be compiled or run when using the Solaris Studio compilers
(as these are currently unsupported by Catch). This should make it easier to submit packages to
CRAN that use Catch.

Symbol Registration

If you’ve opted to disable dynamic symbol lookup in your package, then you’ll need to explicitly
export a symbol in your package that testthat can use to run your unit tests. testthat will look
for a routine with one of the names:

C_run_testthat_tests
c_run_testthat_tests
run_testthat_tests

Assuming you have useDynLib(<pkg>, .registration = TRUE) in your package’s NAMESPACE
file, this implies having routine registration code of the form:

// The definition for this function comes from the file 'src/test-runner.cpp',
// which is generated via `testthat::use_catch()`.
extern SEXP run_testthat_tests();

static const R_CallMethodDef callMethods[] = {
// other .Call method definitions,
{"run_testthat_tests", (DL_FUNC) &run_testthat_tests, 0},
{NULL, NULL, 0}

};

void R_init_<pkg>(DllInfo* dllInfo) {
R_registerRoutines(dllInfo, NULL, callMethods, NULL, NULL);
R_useDynamicSymbols(dllInfo, FALSE);

}

replacing <pkg> above with the name of your package, as appropriate.

See Controlling Visibility and Registering Symbols in the Writing R Extensions manual for more
information.

Advanced Usage

If you’d like to write your own Catch test runner, you can instead use the testthat::catchSession()
object in a file with the form:

#define TESTTHAT_TEST_RUNNER
#include <testthat.h>

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Controlling-visibility
https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Registering-symbols

use_catch 59

void run()
{

Catch::Session& session = testthat::catchSession();
// interact with the session object as desired

}

This can be useful if you’d like to run your unit tests with custom arguments passed to the Catch
session.

Standalone Usage

If you’d like to use the C++ unit testing facilities provided by Catch, but would prefer not to use the
regular testthat R testing infrastructure, you can manually run the unit tests by inserting a call to:

.Call("run_testthat_tests", PACKAGE = <pkgName>)

as necessary within your unit test suite.

See Also

Catch, the library used to enable C++ unit testing.

https://github.com/catchorg/Catch2/blob/master/docs/assertions.md

Index

∗ expectations
comparison-expectations, 3
equality-expectations, 5
expect_error, 7
expect_length, 11
expect_match, 12
expect_named, 14
expect_null, 16
expect_output, 17
expect_silent, 19
inheritance-expectations, 29
logical-expectations, 39

∗ mocking
local_mocked_bindings, 34
mock_output_sequence, 41

∗ reporters
CheckReporter, 3
DebugReporter, 4
FailReporter, 29
JunitReporter, 32
ListReporter, 32
LlmReporter, 33
LocationReporter, 39
MinimalReporter, 40
MultiReporter, 42
ProgressReporter, 42
RStudioReporter, 43
SilentReporter, 44
SlowReporter, 46
StopReporter, 48
SummaryReporter, 49
TapReporter, 49
TeamcityReporter, 49

all.equal(), 5, 6, 44
announce_snapshot_file

(expect_snapshot_file), 22

base::all.equal(), 25
base::grepl, 13

CheckReporter, 3, 5, 29, 32, 33, 39, 41–44,
47–49

CompactProgressReporter
(ProgressReporter), 42

compare(), 6
compare_file_binary

(expect_snapshot_file), 22
compare_file_text

(expect_snapshot_file), 22
comparison-expectations, 3
curl::nslookup(), 46

DebugReporter, 3, 4, 29, 32, 33, 39, 41–44,
47–49

deparse(), 25
dim(), 11, 12

edition_get (local_edition), 33
equality-expectations, 5
expect_all_equal, 6
expect_all_false (expect_all_equal), 6
expect_all_true (expect_all_equal), 6
expect_condition (expect_error), 7
expect_contains (expect_setequal), 18
expect_disjoint (expect_setequal), 18
expect_equal (equality-expectations), 5
expect_equal(), 55
expect_error, 4, 6, 7, 12, 14, 15, 17, 18, 20,

30, 40
expect_error(), 15, 55
expect_failure (expect_success), 25
expect_false (logical-expectations), 39
expect_gt (comparison-expectations), 3
expect_gte (comparison-expectations), 3
expect_identical

(equality-expectations), 5
expect_in (expect_setequal), 18
expect_invisible, 10
expect_length, 4, 6, 10, 11, 14, 15, 17, 18,

20, 30, 40

60

INDEX 61

expect_lt (comparison-expectations), 3
expect_lte (comparison-expectations), 3
expect_mapequal (expect_setequal), 18
expect_mapequal(), 6
expect_match, 4, 6, 9, 10, 12, 12, 15, 17, 18,

20, 30, 40
expect_match(), 26
expect_message (expect_error), 7
expect_named, 4, 6, 10, 12, 14, 14, 17, 18, 20,

30, 40
expect_no_condition (expect_no_error),

15
expect_no_error, 15
expect_no_error(), 9
expect_no_match (expect_match), 12
expect_no_message (expect_no_error), 15
expect_no_warning (expect_no_error), 15
expect_null, 4, 6, 10, 12, 14, 15, 16, 18, 20,

30, 40
expect_output, 4, 6, 10, 12, 14, 15, 17, 17,

20, 30, 40
expect_r6_class

(inheritance-expectations), 29
expect_reference, 4, 6, 10, 12, 14, 15, 17,

18, 20, 30, 40
expect_reference(), 6
expect_s3_class

(inheritance-expectations), 29
expect_s4_class

(inheritance-expectations), 29
expect_s7_class

(inheritance-expectations), 29
expect_setequal, 18
expect_setequal(), 6
expect_shape (expect_length), 11
expect_silent, 4, 6, 10, 12, 14, 15, 17, 18,

19, 30, 40
expect_snapshot, 20
expect_snapshot(), 7, 9, 17, 24
expect_snapshot_failure

(expect_success), 25
expect_snapshot_file, 22
expect_snapshot_value, 24
expect_snapshot_value(), 20
expect_success, 25
expect_that(), 48
expect_true (logical-expectations), 39
expect_type (inheritance-expectations),

29
expect_vector, 26
expect_vector(), 12, 29
expect_visible (expect_invisible), 10
expect_warning (expect_error), 7
extract_test, 27

fail, 28
FailReporter, 3, 5, 29, 32, 33, 39, 41–44,

47–49

grepl(), 13, 51

identical(), 5, 6
inheritance-expectations, 29
inherits(), 29
is(), 29
is_checking (is_testing), 31
is_parallel (is_testing), 31
is_snapshot (is_testing), 31
is_testing, 31
is_testing(), 38

jsonlite::fromJSON(), 25
jsonlite::serializeJSON(), 25
jsonlite::toJSON(), 25
jsonlite::unserializeJSON(), 25
JunitReporter, 3, 5, 29, 32, 32, 33, 39,

41–44, 47–49

length(), 11
library(), 51, 53
ListReporter, 3, 5, 29, 32, 32, 33, 39, 41–44,

47–49
LlmReporter, 3, 5, 29, 32, 33, 39, 41–44,

47–49
local_edition, 33
local_mocked_bindings, 34, 41
local_mocked_bindings(), 36
local_mocked_r6_class, 36
local_mocked_r6_class(), 34
local_mocked_s3_method, 36
local_mocked_s3_method(), 34
local_mocked_s4_method

(local_mocked_s3_method), 36
local_mocked_s4_method(), 34
local_on_cran (skip), 44
local_reproducible_output

(local_test_context), 37

62 INDEX

local_test_context, 37
LocationReporter, 3, 5, 29, 32, 33, 39,

41–44, 47–49
logical-expectations, 39

MinimalReporter, 3, 5, 29, 32, 33, 39, 40,
42–44, 47–49

mock_output_sequence, 36, 41
mock_output_sequence(), 35
MultiReporter, 3, 5, 29, 32, 33, 39, 41, 42,

42, 43, 44, 47–49

ncol(), 11, 12
nrow(), 11, 12

ParallelProgressReporter
(ProgressReporter), 42

pass (fail), 28
pkgload::load_all(), 34, 51, 53
ProgressReporter, 3, 5, 29, 32, 33, 39, 41,

42, 42, 43, 44, 47–49

quasi_label, 5–9, 12–20, 26, 30, 40

recover(), 4
Reporter, 3, 5, 29, 32, 33, 39, 41–44, 47–49,

51–53
rlang::is_interactive(), 38
rlang::trace_back(), 28
RStudioReporter, 3, 5, 29, 32, 33, 39, 41, 42,

43, 44, 47–49

S7::S7_class(), 30
S7::S7_inherits(), 29
serialize(), 25
set_state_inspector, 43
shiny::runApp(), 47
show_failure (expect_success), 25
SilentReporter, 3, 5, 29, 32, 33, 39, 41–43,

44, 47–49
skip, 44
skip(), 23
skip_if (skip), 44
skip_if_not (skip), 44
skip_if_not_installed (skip), 44
skip_if_offline (skip), 44
skip_if_translated (skip), 44
skip_on_bioc (skip), 44
skip_on_ci (skip), 44
skip_on_covr (skip), 44

skip_on_cran (skip), 44
skip_on_os (skip), 44
skip_unless_r (skip), 44
SlowReporter, 3, 5, 29, 32, 33, 39, 41–44, 46,

48, 49
snapshot_accept, 47
snapshot_accept(), 22
snapshot_download_gh, 48
snapshot_reject (snapshot_accept), 47
snapshot_review (snapshot_accept), 47
snapshot_review(), 22
sQuote(), 38
stop(), 48
StopReporter, 3, 5, 29, 32, 33, 39, 41–44, 47,

48, 49
SummaryReporter, 3, 5, 29, 32, 33, 39, 41–44,

47–49, 49
suppressMessages(), 7
suppressWarnings(), 7

TapReporter, 3, 5, 29, 32, 33, 39, 41–44,
47–49, 49

TeamcityReporter, 3, 5, 29, 32, 33, 39,
41–44, 47–49, 49

teardown_env, 50
test_check (test_package), 53
test_check(), 31
test_dir, 50
test_dir(), 22, 42, 53
test_file, 51
test_file(), 22, 42
test_local (test_package), 53
test_local(), 50
test_package, 53
test_package(), 50
test_path, 54
test_that, 55
test_that(), 44
testing_package (is_testing), 31
try_again, 56
typeof(), 30

use_catch, 56

vctrs::vec_assert(), 26

waldo::compare(), 6, 25
with_mocked_bindings

(local_mocked_bindings), 34

INDEX 63

withr::defer(), 50
withr::deferred_run(), 37

	CheckReporter
	comparison-expectations
	DebugReporter
	equality-expectations
	expect_all_equal
	expect_error
	expect_invisible
	expect_length
	expect_match
	expect_named
	expect_no_error
	expect_null
	expect_output
	expect_setequal
	expect_silent
	expect_snapshot
	expect_snapshot_file
	expect_snapshot_value
	expect_success
	expect_vector
	extract_test
	fail
	FailReporter
	inheritance-expectations
	is_testing
	JunitReporter
	ListReporter
	LlmReporter
	local_edition
	local_mocked_bindings
	local_mocked_r6_class
	local_mocked_s3_method
	local_test_context
	LocationReporter
	logical-expectations
	MinimalReporter
	mock_output_sequence
	MultiReporter
	ProgressReporter
	RStudioReporter
	set_state_inspector
	SilentReporter
	skip
	SlowReporter
	snapshot_accept
	snapshot_download_gh
	StopReporter
	SummaryReporter
	TapReporter
	TeamcityReporter
	teardown_env
	test_dir
	test_file
	test_package
	test_path
	test_that
	try_again
	use_catch
	Index

