Package ‘udpipe’

January 30, 2026
Type Package

Title Tokenization, Parts of Speech Tagging, Lemmatization and
Dependency Parsing with the "UDPipe' 'NLP' Toolkit

Version 0.8.16
Maintainer Jan Wijffels <jwijffels@bnosac.be>

Description This natural language processing toolkit provides language-agnostic
'tokenization', 'parts of speech tagging', lemmatization' and 'dependency
parsing' of raw text. Next to text parsing, the package also allows you to train
annotation models based on data of 'treebanks' in 'CoNLL-U' format as provided
at <https://universaldependencies.org/format.html>. The techniques are explained
in detail in the paper: "Tokenizing, POS Tagging, Lemmatizing and Parsing UD 2.0
with UDPipe', available at <doi:10.18653/v1/K17-3009>.
The toolkit also contains functionalities for commonly used data manipulations on texts
which are enriched with the output of the parser. Namely functionalities and algorithms
for collocations, token co-occurrence, document term matrix handling,
term frequency inverse document frequency calculations,
information retrieval metrics (Okapi BM25), handling of multi-word expressions,
keyword detection (Rapid Automatic Keyword Extraction, noun phrase extraction, syntacti-
cal patterns)
sentiment scoring and semantic similarity analysis.

License MPL-2.0

URL https://bnosac.github.io/udpipe/en/index.html,
https://github.com/bnosac/udpipe

Encoding UTF-8

Depends R (>=2.10)

Imports Rcpp (>=0.11.5), data.table (>= 1.9.6), Matrix, methods,
stats

LinkingTo Rcpp

VignetteBuilder knitr

Suggests knitr, rmarkdown, topicmodels, lattice, parallel
RoxygenNote 7.3.2

https://universaldependencies.org/format.html
https://doi.org/10.18653/v1/K17-3009
https://bnosac.github.io/udpipe/en/index.html
https://github.com/bnosac/udpipe

NeedsCompilation yes

Author Jan Wijffels [aut, cre, cph] (R wrapper),

BNOSAC [cph] (R wrapper),

Institute of Formal and Applied Linguistics, Faculty of Mathematics and
Physics, Charles University in Prague, Czech Republic [cph]
(src/udpipe.cpp & src/udpipe.h),

Milan Straka [aut, cph] (src/udpipe.cpp & src/udpipe.h),

Jana Strakova [ctb, cph] (src/udpipe.cpp & src/udpipe.h)

Repository CRAN
Date/Publication 2026-01-30 14:50:02 UTC

Contents

as.data.frame.udpipe_connlu oL
aS.MAtriX.COOCCUITENCE « & v o e o e e e e e e e e e e e e
as_conllu
AS_COOCCUITENCE . . . & v o v o e e e e e e e e e e e e e e e e e
as_fastteXt e e
as_phrasemachine o
aS_WOIrd2VEC o e e e e
brussels_listings
brussels_reviews e e
brussels_reviews_annoo e e e e e
brussels_reviews_w2v_embeddings_lemma_nl
cbind_dependencies o
cbind_morphological oo
COOCCUITENCE . . & v o v v e e e e e e e e e e e e e e e e e
document_term_frequencies
document_term_frequencies_statistics
document_term_matriXo e e e e e e e e e
dim_align
dtm_bind
dtm_chisq
dtm_colsums
dtm_conform
dtm_cor e
dtm_remove_lowfreq
dtm_remove_sparseterms
dtm_remove_terms e e e e e e
dtm_remove_tfidf
dtM_TEVErse e e
dtm_sample
dtm_svd_similarity
dem_tfdf
keywords_collocation oL
keywords_phrases
keywords_rake L

Contents

as.data.frame.udpipe_connlu 3

Index

pastedata.frame e e e 49
predict LDA_VEM e 50
strsplit.dataframe 52
syntaxpatterns-class L. L. e 53
syntaxrelation-class L. e 53
txt_collapse 54
EXE CONLAINS . . . o o o o o e e e e e e e e 55
IXE_CONtEXt e e e e e e e e e 56
IXE_COUNL o o o e e e e e e e e e e e 57
IXE_freq e e 58
txt_greplo 58
txt_highlight 60
EXENEXE . . o v o e e e e e e e e e e e e e e 60
EXE_NEXEETAM . . . o v v o i e 61
tXt_overlap 62
EXE_PASIE . . o o o o o e e e 63
IXE_PIeVIOUS o o o i e e e e e e e e e 64
IXE_PIreviouSZram o v v v vt e e e e e e e e e e e e e 64
XU recode e e 65
tXt_recode_Nngram e e 66
tXt_sample e e e e 68
IXE_SENtIMENt it v e e e e e e e e e e e e e e e e 68
XU SHOW . . . o o e e 71
TXE_LAZSEQUENCE . . . v v v o e v e e e e e e e e e e e e e e e e e e 72
udpipeo 73
udpipe_acCuracy e e 76
udpipe_annotate e e e e e e e 77
udpipe_annotation_params e e e e e e e e e e e 80
udpipe_download_model 80
udpipe_load_model 86
udpipe_read_conllu L. 87
udpipe_train e e e e e e e e 88
unique_identifier L. L 91
unlist_tokKens e 92

93

as.data.frame.udpipe_connlu

Convert the result of udpipe_annotate to a tidy data frame

Description

Convert the result of udpipe_annotate to a tidy data frame

4 as.data.frame.udpipe_connlu

Usage
S3 method for class 'udpipe_connlu'
as.data.frame(x, ...)
Arguments
X an object of class udpipe_connlu as returned by udpipe_annotate

currently not used

Value
a data.frame with columns doc_id, paragraph_id, sentence_id, sentence, token_id, token, lemma,

upos, xpos, feats, head_token_id, dep_rel, deps, misc

The columns paragraph_id, sentence_id are integers, the other fields are character data in UTF-8
encoding.

To get more information on these fields, visit https://universaldependencies.org/format.
html or look at udpipe.

See Also

udpipe_annotate

Examples
model <- udpipe_download_model(language = "dutch-lassysmall")
if (!model$download_failed){

ud_dutch <- udpipe_load_model (model$file_model)

txt <- c("Ik ben de weg kwijt, kunt u me zeggen waar de Lange Wapper ligt? Jazeker meneer”,
"Het gaat vooruit, het gaat verbazend goed vooruit")

X <- udpipe_annotate(ud_dutch, x = txt)

X <- as.data.frame(x)

head(x)

}

cleanup for CRAN only - you probably want to keep your model if you have downloaded it
if(file.exists(model$file_model)) file.remove(model$file_model)

https://universaldependencies.org/format.html
https://universaldependencies.org/format.html

as.matrix.cooccurrence 5

as.matrix.cooccurrence
Convert the result of cooccurrence to a sparse matrix

Description

Convert the result of cooccurrence to a sparse matrix.

Usage
S3 method for class 'cooccurrence'
as.matrix(x, ...)
Arguments
X an object of class cooccurrence as returned by cooccurrence
not used
Value

a sparse matrix with in the rows and columns the terms and in the cells how many times the cooc-
currence occurred

See Also

cooccurrence

Examples

data(brussels_reviews_anno)
By document, which lemma's co-occur

x <- subset(brussels_reviews_anno, xpos %in% c(”"NN", "JJ") & language %in% "fr")
X <- cooccurrence(x, group = "doc_id", term = "lemma")

X <- as.matrix(x)

dim(x)

x[1:3, 1:3]

6 as_conllu
as_conllu Convert a data.frame to CONLL-U format
Description
If you have a data.frame with annotations containing 1 row per token, you can convert it to CONLL-
U format with this function. The data frame is required to have the following columns: doc_id,
sentence_id, sentence, token_id, token and optionally has the following columns: lemma, upos,
xpos, feats, head_token_id, dep_rel, deps, misc. Where these fields have the following meaning
* doc_id: the identifier of the document
* sentence_id: the identifier of the sentence
* sentence: the text of the sentence for which this token is part of
 token_id: Word index, integer starting at 1 for each new sentence; may be a range for multi-
word tokens; may be a decimal number for empty nodes.
* token: Word form or punctuation symbol.
* lemma: Lemma or stem of word form.
* upos: Universal part-of-speech tag.
» xpos: Language-specific part-of-speech tag; underscore if not available.
« feats: List of morphological features from the universal feature inventory or from a defined
language-specific extension; underscore if not available.
¢ head_token_id: Head of the current word, which is either a value of token_id or zero (0).
* dep_rel: Universal dependency relation to the HEAD (root iff HEAD = 0) or a defined
language-specific subtype of one.
¢ deps: Enhanced dependency graph in the form of a list of head-deprel pairs.
* misc: Any other annotation.
The tokens in the data.frame should be ordered as they appear in the sentence.
Usage
as_conllu(x)
Arguments
X a data.frame with columns doc_id, sentence_id, sentence, token_id, token, lemma,
upos, xpos, feats, head_token_id, deprel, dep_rel, misc
Value

a character string of length 1 containing the data.frame in CONLL-U format. See the example. You
can easily save this to disk for processing in other applications.

as_cooccurrence 7

References

https://universaldependencies.org/format.html

Examples

file_conllu <- system.file(package = "udpipe”, "dummydata”, "traindata.conllu”)
X <- udpipe_read_conllu(file_conllu)

str(x)

conllu <- as_conllu(x)

cat(conllu)

Not run:

Write it to file, making sure it is in UTF-8

cat(as_conllu(x), file = file("annotations.conllu”, encoding = "UTF-8"))

End(Not run)

Some fields are not mandatory, they will assummed to be NA
conllu <- as_conllu(x[, c('doc_id', 'sentence_id', 'sentence',

'token_id', 'token', 'upos')])
cat(conllu)

as_cooccurrence Convert a matrix to a co-occurrence data.frame

Description

Use this function to convert the cells of a matrix to a co-occurrence data.frame containing fields
term1, term2 and cooc where each row of the resulting data.frame contains the value of a cell in the
matrix if the cell is not empty.

Usage

as_cooccurrence(x)

Arguments

X a matrix or sparseMatrix

Value

a data.frame with columns term1, term2 and cooc where the data in cooc contain the content of the
cells in the matrix for the combination of term1 and term2

https://universaldependencies.org/format.html

8 as_fasttext

Examples

data(brussels_reviews_anno)

x <- subset(brussels_reviews_anno, language == "nl")

dtm <- document_term_frequencies(x = x, document = "doc_id", term = "token")
dtm <- document_term_matrix(dtm)

correlation <- dtm_cor(dtm)
cooc <- as_cooccurrence(correlation)
head(cooc)

as_fasttext Combine labels and text as used in fasttext

Description

Fasttext prepends a label or different labels to text using a special string (__label__). This function
takes a character vector of text and prepends the labels alongside the special string.

Usage
as_fasttext(x, y, label = "__label__")
Arguments
X a character vector
y a character vector of labels or a list of labels. y should be of the same length as
X
label the string to use to prepend to the label. Defaults to __label
Value

a character vector of text where x and y are combined

Examples
as_fasttext(x = c(”"just a bit of txt"”, "example2”, "more txt please”, "more"),
y = c("pos”, "neg”, "neg”, NA))
as_fasttext(x = c("just a bit of txt"”, "example2”, "more txt please”, "more"),

y list(c("ok”, "pos"), c("neg”, "topic2"), "", NA))

as_phrasemachine 9

as_phrasemachine Convert Parts of Speech tags to one-letter tags which can be used to
identify phrases based on regular expressions

Description

Noun phrases are of common interest when doing natural language processing. Extracting noun
phrases from text can be done easily by defining a sequence of Parts of Speech tags. For example
this sequence of POS tags can be seen as a noun phrase: Adjective, Noun, Preposition, Noun.
This function recodes Universal POS tags to one of the following 1-letter tags, in order to simplify
writing regular expressions to find Parts of Speech sequences:

* A: adjective

* C: coordinating conjuction

e D: determiner

* M: modifier of verb

* N: noun or proper noun

* P: preposition

* O: other elements
After which identifying a simple noun phrase can be just expressed by using the following regular

expression (AIN)*N(P+D*(AIN)*N)* which basically says start with adjective or noun, another
noun, a preposition, determiner adjective or noun and next a noun again.

Usage
as_phrasemachine(x, type = c("upos”, "penn-treebank"))
Arguments
X a character vector of POS tags for example by using udpipe_annotate
type either "upos’ or ’penn-treebank’ indicating to recode Universal Parts of Speech
tags to the counterparts as described in the description, or to recode Parts of
Speech tags as known in the Penn Treebank to the counterparts as described in
the description
Details

For more information on extracting phrases see http://brenocon.com/handler2016phrases.
pdf

Value

the character vector x where the respective POS tags are replaced with one-letter tags

http://brenocon.com/handler2016phrases.pdf
http://brenocon.com/handler2016phrases.pdf

10 as_word2vec

See Also

phrases

Examples

x <= c("PROPN", "SCONJ", "ADJ", "NOUN", "VERB", "INTJ", "DET", "VERB",
"PROPN", "AUX", "NUM", "NUM", "X", "SCONJ", "PRON", "PUNCT", "ADP",
"X", "PUNCT", "AUX", "PROPN", "ADP", "X", "PROPN", "ADP", "DET",
"CCONJ", "INTJ", "NOUN", "PROPN")

as_phrasemachine(x)

as_word2vec Convert a matrix of word vectors to word2vec format

Description

The word2vec format provides in the first line the dimension of the word vectors and in the follow-
ing lines one has the elements of the wordvector where each line covers one word or token.

The function is basically a utility function which allows one to write wordvectors created with
other R packages in the well-known word2vec format which is used by udpipe_train to train the
dependency parser.

Usage

as_word2vec(x)

Arguments
X a matrix with word vectors where the rownames indicate the word or token and
the number of columns of the matrix indicate the side of the word vector
Value

a character string of length 1 containing the word vectors in word2vec format which can be written
to a file on disk

Examples

wordvectors <- matrix(rnorm(1000), nrow = 100, ncol = 10)

rownames (wordvectors) <- sprintf("word%s"”, seq_len(nrow(wordvectors)))
wv <- as_word2vec(wordvectors)

cat(wv)

f <- file(tempfile(fileext = ".txt"), encoding = "UTF-8")
cat(wv, file = f)
close(f)

brussels_listings 11

brussels_listings Brussels AirBnB address locations available at www.insideairbnb.com

Description

Brussels AirBnB address locations available at www.insideairbnb.com More information: https://insideairbnb.com/get-
the-data.html

Data has been converted from UTF-8 to ASCII as in iconv(x, from= "UTF-8", to = "ASCII//TRANSLIT")

in order to be able to comply to CRAN policies.

Source

https://insideairbnb.com/brussels: information of 2015-10-03

See Also

brussels_reviews, brussels_reviews_anno

Examples

data(brussels_listings)
head(brussels_listings)

brussels_reviews Reviews of AirBnB customers on Brussels address locations available
at www.insideairbnb.com

Description

Reviews of AirBnB customers on Brussels address locations available at www.insideairbnb.com

More information: https://insideairbnb.com/get-the-data.html. The data contains 500 reviews in
Spanish, 500 reviews in French and 500 reviews in Dutch.

The data frame contains the field id (unique), listing_id which corresponds to the listing_id of the
brussels_listings dataset and text fields feedback and language (identified with package cld2)

Data has been converted from UTF-8 to ASCII as in iconv(x, from="UTF-8", to = "ASCII//TRANSLIT")
in order to be able to comply to CRAN policies.

Source

https://insideairbnb.com/brussels: information of 2015-10-03

See Also

brussels_listings, brussels_reviews_anno

12 brussels_reviews_anno

Examples

data(brussels_reviews)
str(brussels_reviews)
head(brussels_reviews)

brussels_reviews_anno Reviews of the AirBnB customers which are tokenised, POS tagged
and lemmatised

Description

Reviews of the AirBnB customerswhich are tokenised, POS tagged and lemmatised. The data con-

tains 1 row per document/token and contains the fields doc_id, language, sentence_id, token_id,

token, lemma, xpos.

Data has been converted from UTF-8 to ASCII as in iconv(x, from="UTF-8", to = "ASCII//TRANSLIT")
in order to be able to comply to CRAN policies.

Source

https://insideairbnb.com/brussels: information of 2015-10-03

See Also

brussels_reviews, brussels_listings

Examples

brussels_reviews_anno
data(brussels_reviews_anno)
head(brussels_reviews_anno)
sort(table(brussels_reviews_anno$xpos))

Not run:

##

If you want to construct a similar dataset as the

brussels_reviews_anno dataset based on the udpipe library, do as follows
##

library(udpipe)
library(data.table)
data(brussels_reviews)

The brussels_reviews contains comments on Airbnb sites in 3 languages: es, fr and nl
table(brussels_reviews$language)
bx1l_anno <- split(brussels_reviews, brussels_reviews$language)

Annotate the Spanish comments
m <- udpipe_download_model(language = "spanish-ancora")

brussels_reviews_w2v_embeddings_lemma_nl 13

m <- udpipe_load_model(file = m$file_model)
bx1_anno$es <- udpipe_annotate(object = m, x = bxl_annoesfeedback, doc_id = bxl_annoesid)

Annotate the French comments

m <- udpipe_download_model(language = "french-partut”)

m <- udpipe_load_model(file = m$file_model)

bx1_anno$fr <- udpipe_annotate(object = m, x = bxl_annofrfeedback, doc_id = bxl_annofrid)

Annotate the Dutch comments

m <- udpipe_download_model(language = "dutch-lassysmall”)

m <- udpipe_load_model(file = m$file_model)

bx1_anno$nl <- udpipe_annotate(object = m, x = bxl_annonlfeedback, doc_id = bxl_annonlid)

brussels_reviews_anno <- lapply(bxl_anno, as.data.frame)
brussels_reviews_anno <- rbindlist(brussels_reviews_anno)

str(brussels_reviews_anno)

End(Not run)

brussels_reviews_w2v_embeddings_lemma_nl
An example matrix of word embeddings

Description

An simple 10-dimensional example matrix of word embeddings trained on the Dutch lemma’s of
the dataset brussels_reviews_anno

Examples

data(brussels_reviews_w2v_embeddings_lemma_nl)
head(brussels_reviews_w2v_embeddings_lemma_nl)

cbind_dependencies Add the dependency parsing information to an annotated dataset

Description

Annotated results of udpipe_annotate contain dependency parsing results which indicate how
each word is linked to another word and the relation between these 2 words.

This information is available in the fields token_id, head_token_id and dep_rel which indicates
how each token is linked to the parent. The type of relation (dep_rel) is defined at https://
universaldependencies.org/u/dep/index.html.

For example in the text *The economy is weak but the outlook is bright’, the term economy is linked
to weak as the term economy is the nominal subject of weak.

This function adds the parent or child information to the annotated data.frame.

https://universaldependencies.org/u/dep/index.html
https://universaldependencies.org/u/dep/index.html

14

Usage

cbind_dependencies

cbind_dependencies(

X’

type = c("parent”, "child"”, "parent_rowid", "child_rowid"),
recursive = FALSE

)
Arguments
X a data.frame or data.table as returned by as.data. frame(udpipe_annotate(...))
type either one of ’parent’, ’child’, ’parent_rowid’, ’child_rowid’. Look to the re-
turn value section for more information on the difference in logic. Defaults to
"parent’, indicating to add the information of the head_token_id to the dataset
recursive in case when type is set to *parent_rowid’ or ’child_rowid’, do you want the
parent of the parent of the parent, ... or the child of the child of the child ... in-
cluded. Defaults to FALSE indicating to only have the direct parent or children.
Details

Mark that the output which this function provides might possibly change in subsequent releases and
is experimental.

Value

a data.frame/data.table in the same order of x where extra information is added on top namely:

In case type is set to 'parent': the token/lemma/upos/xpos/feats information of the parent
(head dependency) is added to the data.frame. See the examples.

In case typeissetto 'child’: the token/lemma/upos/xpos/feats/dep_rel information of all the
children is put into a column called ’children’ which is added to the data.frame. This is a list

column where each list element is a data.table with these columns: token/lemma/upos/xpos/dep_rel.

See the examples.

In case type is set to 'parent_rowid': a new list column is added to x containing the row
numbers within each combination of doc_id, paragraph_id, sentence_id which are par-
ents of the token.

In case recursive is set to TRUE the new column which is added to the data.frame is called
parent_rowids, otherwise it is called parent_rowid. See the examples.

In case type is set to 'child_rowid': a new list column is added to x containing the row
numbers within each combination of doc_id, paragraph_id, sentence_id which are chil-
dren of the token.

In case recursive is set to TRUE the new column which is added to the data.frame is called
child_rowids, otherwise it is called child_rowid. See the examples.

Examples

Not run:
udmodel <- udpipe_download_model(language = "english-ewt")
udmodel <- udpipe_load_model(file = udmodel$file_model)

cbind_morphological 15

X <- udpipe_annotate(udmodel,

x = "The economy is weak but the outlook is bright")
x <- as.data.frame(x)
x[, c("token_id", "token", "head_token_id", "dep_rel")]

x <- cbind_dependencies(x, type = "parent")

nominalsubject <- subset(x, dep_rel %in% c(”"nsubj"))

nominalsubject <- nominalsubject[, c("dep_rel”, "token", "token_parent”)]
nominalsubject

X <- cbind_dependencies(x, type = "child")

x <- cbind_dependencies(x, type = "parent_rowid")

x <- cbind_dependencies(x, type = "parent_rowid”, recursive = TRUE)
x <- cbind_dependencies(x, type = "child_rowid")

x <- cbind_dependencies(x, type = "child_rowid”, recursive = TRUE)
X

lapply(x$child_rowid, FUN=function(i) x[sort(i), 1)

End(Not run)

cbind_morphological Add morphological features to an annotated dataset

Description

The result of udpipe_annotate which is put into a data.frame returns a field called feats contain-
ing morphological features as defined at https://universaldependencies.org/u/feat/index.
html. If there are several of these features, these are concatenated with the | symbol. This func-
tion extracts each of these morphological features separately and adds these as extra columns to the

data.frame
Usage
cbind_morphological(x, term = "feats”, which)
Arguments
X a data.frame or data.table as returned by as.data. frame(udpipe_annotate(...))
term the name of the field in x which contains the morphological features. Defaults
to *feats’.
which a character vector with names of morphological features to uniquely parse out.

These features are one of the 24 lexical and grammatical properties of words de-
fined at https://universaldependencies.org/u/feat/index.html. Possi-
ble values are:

e "lexical": "PronType", "NumType", "Poss", "Reflex", "Foreign", "Abbr",
llTypoH

* "inflectional_noun": "Gender", "Animacy", "NounClass", "Number", "Case",
"Definite", "Degree"

https://universaldependencies.org/u/feat/index.html
https://universaldependencies.org/u/feat/index.html
https://universaldependencies.org/u/feat/index.html

16 cooccurrence

* "inflectional_verb": "VerbForm", "Mood", "Tense", "Aspect", "Voice", "Ev-
ident", "Polarity”, "Person", "Polite", "Clusivity"

See the examples.

Value

x in the same order with extra columns added (at least the column has_morph is added indicating if
any morphological features are present and as well extra columns for each possible morphological
feature in the data)

Examples
Not run:
udmodel <- udpipe_download_model(language = "english-ewt")

udmodel <- udpipe_load_model(file = udmodel$file_model)
X <- udpipe_annotate(udmodel,
x = "The economy is weak but the outlook is bright")
X <- as.data.frame(x)
x <- cbind_morphological(x, term = "feats")

End(Not run)
f <- system.file(package = "udpipe”, "dummydata", "traindata.conllu”)
x <- udpipe_read_conllu(f)

x <- cbind_morphological(x, term = "feats")

f <- system.file(package = "udpipe”, "dummydata", "traindata.conllu")
X <- udpipe_read_conllu(f)

x <- cbind_morphological(x, term = "feats”,
which = c("Mood"”, "Gender", "VerbForm”, "Polarity”, "Polite"))
extract all features from the feats column even if not present in the data
f <- system.file(package = "udpipe”, "dummydata", "traindata.conllu")
X <- udpipe_read_conllu(f)
X <- cbind_morphological(x, term = "feats”,
which = c("lexical”, "inflectional_noun”, "inflectional_verb"))
cooccurrence Create a cooccurence data.frame
Description

A cooccurence data.frame indicates how many times each term co-occurs with another term.

There are 3 types of cooccurrences:

* Looking at which words are located in the same document/sentence/paragraph.

* Looking at which words are followed by another word

cooccurrence 17

* Looking at which words are in the neighbourhood of the word as in follows the word within
skipgram number of words

The output of the function gives a cooccurrence data.frame which contains the fields term1, term2
and cooc where cooc indicates how many times term1 and term2 co-occurred. This dataset can be
constructed

* based upon a data frame where you look within a group (column of the data.frame) if 2 terms
occurred in that group.

* based upon a vector of words in which case we look how many times each word is followed
by another word.

* based upon a vector of words in which case we look how many times each word is followed
by another word or is followed by another word if we skip a number of words in between.

Note that

* For cooccurrence.data.frame no ordering is assumed which implies that the function does not
return self-occurrences if a word occurs several times in the same group of text and terml1 is
always smaller than term?2 in the output

* For cooccurrence.character we assume text is ordered from left to right, the function as well
returns self-occurrences

You can also aggregate cooccurrences if you decide to do any of these 3 by a certain group and next
want to obtain an overall aggregate.

Usage

cooccurrence(x, order = TRUE, ...)

S3 method for class 'character'
cooccurrence(
X,
order = TRUE,
relevant
skipgram

)

rep(TRUE, length(x)),
Q

S3 method for class 'cooccurrence'
cooccurrence(x, order = TRUE, ...)

S3 method for class 'data.frame'

cooccurrence(x, order = TRUE, ..., group, term)
Arguments
X either

* a data.frame where the data.frame contains 1 row per document/term, in
which case you need to provide group and term where term is the column

18

order

relevant

skipgram

group

term

Value

cooccurrence

containing 1 term per row and group indicates something like a document
id or document + sentence id. This uses cooccurrence.data.frame.

* a character vector with terms where one element contains 1 term. This uses
cooccurrence.character.

* an object of class cooccurrence. This uses cooccurrence.cooccurrence.

logical indicating if we need to sort the output from high cooccurrences to low
coccurrences. Defaults to TRUE.

other arguments passed on to the methods

a logical vector of the same length as x, indicating if the word in x is relevant or
not. This can be used to exclude stopwords from the cooccurrence calculation or
selecting only nouns and adjectives to find cooccurrences along with each other
(for example based on the Parts of Speech upos output from udpipe_annotate).
Only used if calculating cooccurrences on x which is a character vector of words.

integer of length 1, indicating how far in the neighbourhood to look for words.
skipgram is considered the maximum skip distance between words to calculate
co-occurrences (where co-occurrences are of type skipgram-bigram, where a
skipgram-bigram are 2 words which occur at a distance of at most skipgram +
1 from each other).

Only used if calculating cooccurrences on x which is a character vector of words.

character vector of columns in the data frame x indicating to calculate cooccur-
rences within these columns.

This is typically a field like document id or a sentence identifier. To be used if x
is a data.frame.

character string of a column in the data frame x, containing 1 term per row. To
be used if x is a data.frame.

a data.frame with columns term1, term2 and cooc indicating for the combination of term1 and term?2
how many times this combination occurred

Methods (by class)

e cooccurrence(character): Create a cooccurence data.frame based on a vector of terms

* cooccurrence(cooccurrence): Aggregate co-occurrence statistics by summing the cooc by

term/term?2

e cooccurrence(data.frame): Create a cooccurence data.frame based on a data.frame where
you look within a document / sentence / paragraph / group if terms co-occur

Examples

data(brussels_reviews_anno)

By document, which lemma's co-occur
x <- subset(brussels_reviews_anno, xpos %in% c(”"NN", "JJ") & language %in% "fr")
x <- cooccurrence(x, group = "doc_id", term = "lemma")

head(x)

document_term_frequencies 19

Which words follow each other
x <= c("A", "B", "A", "A", "B", "c")
cooccurrence(x)

data(brussels_reviews_anno)

x <- subset(brussels_reviews_anno, language == "es")

x <- cooccurrence(x$lemma)

head(x)

x <- subset(brussels_reviews_anno, language == "es")

x <- cooccurrence(x$lemma, relevant = x$xpos %in% c("NN", "JJ"), skipgram = 4)
head(x)

Which nouns follow each other in the same document
library(data.table)
X <- as.data.table(brussels_reviews_anno)

x <- subset(x, language == "nl" & xpos %in% c("NN"))
x <- x[, cooccurrence(lemma, order = FALSE), by = list(doc_id)]
head(x)

x_nodoc <- cooccurrence(x)
x_nodoc <- subset(x_nodoc, terml != "appartement” & term2 != "appartement”)
head(x_nodoc)

document_term_frequencies

Aggregate a data.frame to the document/term level by calculating how
many times a term occurs per document

Description

Aggregate a data.frame to the document/term level by calculating how many times a term occurs
per document

Usage

document_term_frequencies(x, document, ...)

S3 method for class 'data.frame'
document_term_frequencies(

X,

document = colnames(x)[1],

term = colnames(x)[2],

S3 method for class 'character'
document_term_frequencies(
X,

20

document_term_frequencies

document = paste("doc”, seq_along(x), sep = ""),
split = "[[:space:][:punct:]I[:digit:]1]+",

Arguments

X

document

term

split

Value

a data.frame or data.table containing a field which can be considered as a docu-
ment (defaults to the first column in x) and a field which can be considered as a
term (defaults to the second column in x). If the dataset also contains a column
called *freq’, this will be summed over instead of counting the number of rows
occur by document/term combination.

If x is a character vector containing several terms, the text will be split by the
argument split before doing the agregation at the document/term level.

If x is a data.frame, the column in x which identifies a document. If x is a charac-
ter vector then document is a vector of the same length as x where document[i]
is the document id which corresponds to the text in x[1i].

further arguments passed on to the methods

If x is a data.frame, the column in x which identifies a term. Defaults to the
second column in Xx.

The regular expression to be used if x is a character vector. This will split the
character vector x in pieces by the provides split argument. Defaults to splitting
according to spaces/punctuations/digits.

a data.table with columns doc_id, term, freq indicating how many times a term occurred in each
document. If freq occurred in the input dataset the resulting data will have summed the freq. If freq
is not in the dataset, will assume that freq is 1 for each row in the input dataset x.

Methods (by class)

* document_term_frequencies(data.frame): Create a data.frame with one row per docu-
ment/term combination indicating the frequency of the term in the document

* document_term_frequencies(character): Create a data.frame with one row per docu-
ment/term combination indicating the frequency of the term in the document

Examples

#it

Calculate document_term_frequencies on a data.frame

#it

data(brussels_reviews_anno)

x <- document_term_frequencies(brussels_reviews_anno[, c("doc_id", "token")])
x <- document_term_frequencies(brussels_reviews_anno[, c("doc_id", "lemma”)])
str(x)

brussels_reviews_anno$my_doc_id <- paste(brussels_reviews_anno$doc_id,

document_term_frequencies_statistics 21

brussels_reviews_anno$sentence_id)

x <- document_term_frequencies(brussels_reviews_anno[, c("my_doc_id", "lemma")])
##

Calculate document_term_frequencies on a character vector

#H#

data(brussels_reviews)

x <- document_term_frequencies(x = brussels_reviews$feedback, document = brussels_reviews$id,
split =" ")

x <- document_term_frequencies(x = brussels_reviews$feedback, document = brussels_reviews$id,
split = "[[:space:][:punct:][:digit:J]1+")

##

document-term-frequencies on several fields to easily include bigram and trigrams
#H

library(data.table)

X <- as.data.table(brussels_reviews_anno)

x <- x[, token_bigram := txt_nextgram(token, n = 2), by = list(doc_id, sentence_id)]
x <- x[, token_trigram := txt_nextgram(token, n = 3), by = list(doc_id, sentence_id)]
x <- document_term_frequencies(x = x,

document = "doc_id",

term = c("token”, "token_bigram”, "token_trigram"))
head(x)

document_term_frequencies_statistics
Add Term Frequency, Inverse Document Frequency and Okapi BM25
statistics to the output of document_term_frequencies

Description
Term frequency Inverse Document Frequency (tfidf) is calculated as the multiplication of

» Term Frequency (tf): how many times the word occurs in the document / how many words are
in the document

¢ Inverse Document Frequency (idf): log(number of documents / number of documents where
the term appears)

The Okapi BM2S5 statistic is calculated as the multiplication of the inverse document frequency and
the weighted term frequency as defined at https://en.wikipedia.org/wiki/Okapi_BM25.
Usage

document_term_frequencies_statistics(x, k = 1.2, b = 0.75)

Arguments

X adata.table as returned by document_term_frequencies containing the columns
doc_id, term and freq.

https://en.wikipedia.org/wiki/Okapi_BM25

22 document_term_matrix

k parameter k1 of the Okapi BM25 ranking function as defined at https://en.
wikipedia.org/wiki/Okapi_BM25. Defaults to 1.2.
b parameter b of the Okapi BM25 ranking function as defined at https://en.

wikipedia.org/wiki/Okapi_BM25. Defaults to 0.5.

Value

a data.table with columns doc_id, term, freq and added to that the computed statistics tf, idf, tfidf,
tf_bm25 and bm25.

Examples
data(brussels_reviews_anno)
x <- document_term_frequencies(brussels_reviews_anno[, c("doc_id", "token")])

x <- document_term_frequencies_statistics(x)
head(x)

document_term_matrix Create a document/term matrix

Description
Create a document/term matrix from either

* adata.frame with 1 row per document/term as returned by document_term_frequencies

* alist of tokens from e.g. from package sentencepiece, tokenizers.bpe or just by using strsplit
* an object of class DocumentTermMatrix or TermDocumentMatrix from the tm package

* an object of class simple_triplet_matrix from the slam package

 aregular dense matrix
Usage
document_term_matrix(x, vocabulary, weight = "freq”, ...)

S3 method for class 'data.frame'
document_term_matrix(x, vocabulary, weight = "freq”, ...)

S3 method for class 'matrix'
document_term_matrix(x, ...)

S3 method for class 'integer'
document_term_matrix(x, ...)

S3 method for class 'numeric'
document_term_matrix(x, ...)

https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Okapi_BM25

document_term_matrix 23

Default S3 method:
document_term_matrix(x, vocabulary, ...)

S3 method for class 'DocumentTermMatrix'
document_term_matrix(x, ...)

S3 method for class 'TermDocumentMatrix'
document_term_matrix(x, ...)

S3 method for class 'simple_triplet_matrix'

document_term_matrix(x, ...)
Arguments
X a data.frame with columns doc_id, term and freq indicating how many times a
term occurred in that specific document. This is what document_term_frequencies
returns.
This data.frame will be reshaped to a matrix with 1 row per doc_id, the terms
will be put in the columns and the freq in the matrix cells. Note that the column
name to use for freq can be set in the weight argument.
vocabulary a character vector of terms which should be present in the document term matrix
even if they did not occur in x
weight a column of x indicating what to put in the matrix cells. Defaults to ’freq’
indicating to use column freq from x to put into the matrix cells
further arguments currently not used
Value

an sparse object of class dgCMatrix with in the rows the documents and in the columns the terms
containing the frequencies provided in x extended with terms which were not in x but were provided
in vocabulary. The rownames of this resulting object contain the doc_id from x

Methods (by class)

document_term_matrix(data.frame): Construct a document term matrix from a data.frame
with columns doc_id, term, freq

document_term_matrix(matrix): Construct a sparse document term matrix from a matrix

document_term_matrix(integer): Construct a sparse document term matrix from an named
integer vector

document_term_matrix(numeric): Construct a sparse document term matrix from a named
numeric vector

document_term_matrix(default): Construct a document term matrix from a list of tokens

document_term_matrix(DocumentTermMatrix): Convert an object of class DocumentTermMatrix
from the tm package to a sparseMatrix

document_term_matrix(TermDocumentMatrix): Convert an object of class TermDocumentMatrix
from the tm package to a sparseMatrix with the documents in the rows and the terms in the
columns

24 document_term_matrix

e document_term_matrix(simple_triplet_matrix): Convertan object of class simple_triplet_matrix
from the slam package to a sparseMatrix

See Also

sparseMatrix, document_term_frequencies

Examples

x <- data.frame(doc_id = c(1, 1, 2, 3, 4),
term = c("A", "C", "z", "X", "G"),

freq = c(1, 5, 7, 10, 0))
document_term_matrix(x)
document_term_matrix(x, vocabulary = LETTERS)

Example on larger dataset
data(brussels_reviews_anno)

X <- document_term_frequencies(brussels_reviews_anno[, c("doc_id", "lemma")])
dtm <- document_term_matrix(x)

dim(dtm)

X <- document_term_frequencies(brussels_reviews_anno[, c("doc_id", "lemma")])

X <- document_term_frequencies_statistics(x)

dtm <- document_term_matrix(x)

dtm <- document_term_matrix(x, weight = "freq")

dtm <- document_term_matrix(x, weight "tf_idf")

dtm <- document_term_matrix(x, weight = "bm25")

x <- split(brussels_reviews_anno$lemma, brussels_reviews_anno$doc_id)
dtm <- document_term_matrix(x)

example showing the vocubulary argument

allowing you to making sure terms which are not in the data are provided in the resulting dtm
allterms <- unique(x$term)

dtm <- document_term_matrix(head(x, 1000), vocabulary = allterms)

example for a list of tokens
x <- list(docl = c("aa", "bb", "cc", "aa", "b"),
doc2 = c("bb", "bb", "dd", ""),
doc3 = character(),
doc4 = c("cc”, NA),
doc5 = character())
document_term_matrix(x)

dtm <- document_term_matrix(x, vocabulary = c("a", "bb", "cc"))

dtm <- dtm_conform(dtm, rows = c("doc1”, "doc2", "doc7"), columns = c("a", "bb", "cc"))
data(brussels_reviews)

X <- strsplit(setNames(brussels_reviews$feedback, brussels_reviews$id), split = " +")

X <- document_term_matrix(x)

##

Example adding bigrams/trigrams to the document term matrix
Mark that this can also be done using ?dtm_cbind

#H#

library(data. table)

dtm_align

X <- as.data.table(brussels_reviews_anno)
x <- x[, token_bigram := txt_nextgram(token, n = 2), by = list(doc_id, sentence_id)]
x <- x[, token_trigram := txt_nextgram(token, n = 3), by = list(doc_id, sentence_id)]
x <- document_term_frequencies(x = x,
document = "doc_id",
term = c("token"”, "token_bigram”, "token_trigram"))
dtm <- document_term_matrix(x)
#H#
Convert dense matrix to sparse matrix
##
x <- matrix(c(@, @, @, 1, NA, 3, 4, 5, 6, 7), nrow = 2)
X
dtm <- document_term_matrix(x)
dtm
x <- matrix(c(@, @, @, 0.1, NA, 0.3, 0.4, 0.5, 0.6, @.7), nrow = 2)
X
dtm <- document_term_matrix(x)
dtm

X <- setNames(c(TRUE, NA, FALSE, FALSE), c("a", "b", "c", "d"))
X <= as.matrix(x)

dtm <- document_term_matrix(x)

dtm

##

Convert vectors to sparse matrices

#H#

X <- setNames(-3:3, c("a”", "b", "c", "d", "e", "f"))

dtm <- document_term_matrix(x)

dtm

X <- setNames(runif(6), c("a", "b", "c", "d", "e", "f"))
dtm <- document_term_matrix(x)

dtm
##
Convert lists to sparse matrices
##
x <= list(a = c("some", "set", "of", "words"),
b1 = NA,
b2 = NA,
cl = character(),
c2 =20,
d = c("words"”, "words"”, "words"))
dtm <- document_term_matrix(x)
dtm

dtm_align Reorder a Document-Term-Matrix alongside a vector or data.frame

26 dtm_align

Description

This utility function is useful to align a Document-Term-Matrix with information in a data.frame or
a vector to predict, such that both the predictive information as well as the target is available in the
same order.

Matching is done based on the identifiers in the rownames of x and either the names of the y vector
or the first column of y in case it is a data.frame.

Usage
dtm_align(x, y, FUN, ...)
Arguments
X a Document-Term-Matrix of class dgCMatrix (which can be an object returned
by document_term_matrix)
y either a vector or data.frame containing something to align with x (e.g. for
predictive purposes).
¢ In case y is a vector, it should have names which are available in the row-
names of Xx.
e In case y is a data.frame, it’s first column should contain identifiers which
are available in the rownames of x.
FUN a function to be applied on x before aligning it to y. See the examples
further arguments passed on to FUN
Value

a list with elements x and y containing the document term matrix x in the same order as y.

 Ifin y a vector was passed, the returned y element will be a vector

e If in y a data.frame was passed with more than 2 columns, the returned y element will be a
data.frame

* Ifin y a data.frame was passed with exactly 2 columns, the returned y element will be a vector

Only returns data of x with overlapping identifiers in y.

See Also

document_term_matrix

Examples

x <- matrix(1:9, nrow = 3, dimnames = list(c("a", "b", "c")))
X
dtm_align(x

X,

y=cb=1,a=2, c=6,d=26))
dtm_align(x = x,
y=cb=1,,a=2,c=6,d=6,d=7, a=-1))

dtm_bind 27

data(brussels_reviews)

data(brussels_listings)

<- brussels_reviews

<- strsplit.data.frame(x, term = "feedback”, group = "listing_id")
<- document_term_frequencies(x)

<- document_term_matrix(x)

<- brussels_listings$price

names(y) <- brussels_listings$listing_id

x

< X X X

align a matrix of predictors with a vector to predict
trainset <- dtm_align(x = x, y =y)
trainset <- dtm_align(x = x, y =y, FUN = function(dtm){
dtm <- dtm_remove_lowfreq(dtm, minfreq = 5)
dtm <- dtm_sample(dtm)
dtm
»
head(names(y))
head(rownames(x))
head(names(trainset$y))
head(rownames(trainset$x))

align a matrix of predictors with a data.frame
trainset <- dtm_align(x = x, y = brussels_listings[, c("listing_id", "price"”)])
trainset <- dtm_align(x = x,

y = brussels_listings[, c("listing_id", "price"”, "room_type"”)])
head(trainsetylisting_id)
head(rownames(trainset$x))

example with duplicate data in case of data balancing

dtm_align(x = matrix(1:30, nrow = 3, dimnames = list(c("a", "b", "c"))),
y=c(a=1,a=2,b=3,d=6, b=26))

target <- subset(brussels_listings, listing_id %in% brussels_reviews$listing_id)

target <- rbind(target[1:3, 1, target[c(2, 3), 1, target[c(1, 4), 1)

trainset <- dtm_align(x = x, y = target[, c("listing_id", "price")])

trainset <- dtm_align(x = x, y = setNames(target$price, target$listing_id))

names(trainset$y)

rownames(trainset$x)

dtm_bind Combine 2 document term matrices either by rows or by columns

Description

These 2 methods provide cbind and rbind functionality for sparse matrix objects which are re-
turned by document_term_matrix.

In case of dtm_cbind, if the rows are not ordered in the same way in x and y, it will order them
based on the rownames. If there are missing rows these will be filled with NA values.

In case of dtm_rbind, if the columns are not ordered in the same way in x and y, it will order them
based on the colnames. If there are missing columns these will be filled with NA values.

28 dtm_bind

Usage
dtm_cbind(x, y, ...)
dtm_rbind(x, y, ...)
Arguments
X a sparse matrix such as a "dgCMatrix" object which is returned by document_term_matrix
y a sparse matrix such as a "dgCMatrix" object which is returned by document_term_matrix
more sparse matrices
Value

a sparse matrix where either rows are put below each other in case of dtm_rbind or columns are
put next to each other in case of dtm_cbind

See Also

document_term_matrix

Examples

data(brussels_reviews_anno)
X <- brussels_reviews_anno

rbind

dtm1 <- document_term_frequencies(x = subset(x, doc_id %in% c("10049756", "10284782")),
document = "doc_id”, term = "token")

dtml <- document_term_matrix(dtm1)

dtm2 <- document_term_frequencies(x = subset(x, doc_id %in% c("10789408", "12285061", "35509091")),
document = "doc_id”, term = "token")

dtm2 <- document_term_matrix(dtm2)

dtm3 <- document_term_frequencies(x = subset(x, doc_id %in% c("31133394", "36224131")),
document = "doc_id"”, term = "token")

dtm3 <- document_term_matrix(dtm3)

m <- dtm_rbind(dtm1, dtm2)

dim(m)

m <- dtm_rbind(dtm1, dtm2, dtm3)

dim(m)

cbind

library(data.table)

x <- subset(brussels_reviews_anno, language %in% c("nl", "fr"))

X <- as.data.table(x)

x <- x[, token_bigram := txt_nextgram(token, n = 2), by = list(doc_id, sentence_id)]
x <= x[, lemma_upos := sprintf("%s//%s", lemma, upos)]

dtml <- document_term_frequencies(x = x, document = "doc_id", term = c("token"))

dtm1 <- document_term_matrix(dtml)
dtm2 <- document_term_frequencies(x
dtm2 <- document_term_matrix(dtm2)
dtm3 <- document_term_frequencies(x = x, document = "doc_id", term = c("upos”))

x, document = "doc_id"”, term = c("token_bigram”))

dtm_chisq 29

dtm3 <- document_term_matrix(dtm3)

dtm4 <- document_term_frequencies(x = x, document = "doc_id", term = c("lemma_upos”))
dtm4 <- document_term_matrix(dtm4)

m <- dtm_cbind(dtm1, dtm2)

dim(m)
m <- dtm_cbind(dtml, dtm2, dtm3, dtm4)
dim(m)
m <- dtm_cbind(dtmi1[-c(100, 999), 1, dtm2[-1000,1)
dim(m)
dtm_chisq Compare term usage across 2 document groups using the Chi-square
Test for Count Data
Description

Perform a chisq. test to compare if groups of documents have more prevalence of specific terms.
The function looks to each term in the document term matrix and applies a chisq. test comparing
the frequency of occurrence of each term compared to the other terms in the document group.

Usage
dtm_chisq(dtm, groups, correct = TRUE, ...)
Arguments
dtm a document term matrix: an object returned by document_term_matrix
groups a logical vector with 2 groups (TRUE / FALSE) where the size of the groups
vector is the same as the number of rows of dtm and where element i corresponds
row i of dtm
correct passed on to chisq. test
further arguments passed on to chisq. test
Value

a data.frame with columns term, chisq, p.value, freq, freq_true, freq_false indicating for each term
in the dtm, how frequently it occurs in each group, the Chi-Square value and it’s corresponding

p-value.
Examples
data(brussels_reviews_anno)
#H#
Which nouns occur in text containing the term 'centre'
#H#
x <- subset(brussels_reviews_anno, xpos == "NN" & language == "fr")
x <= x[, c("doc_id", "lemma")]

x <- document_term_frequencies(x)

30

dtm <- document_term_matrix(x)
relevant <- dtm_chisq(dtm, groups = dtm[, "centre"] > @)
head(relevant, 10)

##

Which adjectives occur in text containing the term 'hote'

##

x <- subset(brussels_reviews_anno, xpos == "JJ" & language == "fr")
x <= x[, c("doc_id", "lemma")]

x <- document_term_frequencies(x)

dtm <- document_term_matrix(x)

group <- subset(brussels_reviews_anno, lemma %in% "hote")
group <- rownames(dtm) %in% group$doc_id

relevant <- dtm_chisq(dtm, groups = group)

head(relevant, 10)

Not run:

do not show scientific notation of the p-values
options(scipen = 100)

head(relevant, 10)

End(Not run)

dtm_colsums

dtm_colsums Column sums and Row sums for document term matrices

Description

Column sums and Row sums for document term matrices

Usage

dtm_colsums(dtm, groups)

dtm_rowsums(dtm, groups)

Arguments
dtm an object returned by document_term_matrix
groups optionally, a list with column/row names or column/row indexes of the dtm

which should be combined by taking the sum over the rows or columns of these.
See the examples

dtm_colsums 31

Value

Returns either a vector in case argument groups is not provided or a sparse matrix of class dgCMatrix
in case argument groups is provided

* in case groups is not provided: a vector of row/column sums with corresponding names

* in case groups is provided: a sparse matrix containing summed information over the groups
of rows/columns

Examples

x <- data.frame(

doc_id = c(1, 1, 2, 3, 4),

term = c("A", "C", "z", "X", "G"),
freq = c(1, 5, 7, 10, @))

dtm <- document_term_matrix(x)

x <- dtm_colsums(dtm)

X
X <= dtm_rowsums(dtm)
head(x)

##

Grouped column summation
##

x <= list(doc1 = c("aa", "bb", "aa", "b"), doc2 = c("bb", "bb", "BB"))
dtm <- document_term_matrix(x)
dtm
dtm_colsums(dtm, groups = list(combinedB = c("b", "bb"), combinedA = c("aa"”, "A")))
dtm_colsums(dtm, groups = list(combinedA = c("aa", "A")))
dtm_colsums(dtm, groups = list(
combinedB = grep(pattern = "b", colnames(dtm), ignore.case = TRUE, value = TRUE),
combinedA = c("aa", "A", "Z217"),
test = character()))
dtm_colsums(dtm, groups = list())

#H#
Grouped row summation
#H#
x <- list(docl = c("aa"”, "bb", "aa", "b"),
doc2 = c("bb", "bb", "BB"),
doc3 = c("bb", "bb", "BB"),
doc4 = c("bb", "bb", "BB", "b"))
dtm <- document_term_matrix(x)
dtm
dtm_rowsums(dtm, groups = list(docl = "doc1”, combi = c("doc2"”, "doc3"”, "doc4")))
dtm_rowsums(dtm, groups = list(unknown = "docUnknown", combi = c("”doc2"”, "doc3", "doc4")))
dtm_rowsums (dtm, groups = list())

32 dtm_conform

dtm_conform Make sure a document term matrix has exactly the specified rows and
columns

Description

Makes sure the document term matrix has exactly the rows and columns which you specify. If
missing rows or columns are occurring, the function fills these up either with empty cells or with
the value that you provide. See the examples.

Usage

dtm_conform(dtm, rows, columns, fill)

Arguments

dtm a document term matrix: an object returned by document_term_matrix

rows a character vector of row names which dtm should have

columns a character vector of column names which dtm should have

fill a value to use to fill up missing rows / columns. Defaults to using an empty cell.
Value

the sparse matrix dtm with exactly the specified rows and columns

See Also

document_term_matrix

Examples

x <- data.frame(doc_id = c("doc_1", "doc_1", "doc_1", "doc_2"),
text = c("a", "a", "b", "c"),
stringsAsFactors = FALSE)

dtm <- document_term_frequencies(x)

dtm <- document_term_matrix(dtm)

dtm
dtm_conform(dtm,
rows = c("doc_1", "doc_2", "doc_3"), columns = c("a”, "b", "c", "Z", "Y"))
dtm_conform(dtm,
rows = c("doc_1", "doc_2", "doc_3"), columns = c("a", "b", "c", "Z", "Y"),
fill = 1)
dtm_conform(dtm, rows = c("doc_1", "doc_3"), columns = c("a", "b", "c", "Z", "Y"))

dtm_conform(dtm, columns = c("a", "b", "Z"))
dtm_conform(dtm, rows = c("doc_1"))

dtm_conform(dtm, rows = character())

dtm_conform(dtm, columns = character())

dtm_conform(dtm, rows = character(), columns = character())

dtm_cor 33

##

Some examples on border line cases

##

speciall <- dtm[, character()]

special2 <- dtm[character(), character()]
special3 <- dtm[character(), 1]

dtm_conform(speciall,

rows = c("doc_1", "doc_2", "doc_3"), columns = c("a", "b", "c", "Z", "Y"))
dtm_conform(speciall,

rows = c("doc_1", "doc_2", "doc_3"), columns = c("a", "b", "c", "Z", "Y"),

fill = 1)
dtm_conform(speciall, rows = c("doc_1", "doc_3"), columns = c("a", "b", "c", "Z", "Y"))
dtm_conform(speciall, columns = c("a", "b", "Z"))

dtm_conform(speciall, rows = c("doc_1"))

dtm_conform(speciall, rows = character())

dtm_conform(speciall, columns = character())
dtm_conform(speciall, rows = character(), columns = character())

dtm_conform(special2,

rows = c("doc_1", "doc_2", "doc_3"), columns = c("a", "b", "c", "Z", "Y"))
dtm_conform(special2,

rows = c¢("doc_1", "doc_2", "doc_3"), columns = c("a", "b", "c", "Z", "Y"),

fill = 1)
dtm_conform(special2, rows = c("doc_1", "doc_3"), columns = c("a", "b", "c", "Z", "Y"))
dtm_conform(special2, columns = c("a", "b", "Z"))

dtm_conform(special2, rows = c("doc_1"))

dtm_conform(special2, rows = character())

dtm_conform(special2, columns = character())
dtm_conform(special2, rows = character(), columns = character())

dtm_conform(special3,

rows = c("doc_1", "doc_2", "doc_3"), columns = c("a", "b", "c", "Z", "Y"))
dtm_conform(special3,

rows = c¢("doc_1", "doc_2", "doc_3"), columns = c("a", "b", "c", "Z", "Y"),

fill = 1)
dtm_conform(special3, rows = c("doc_1", "doc_3"), columns = c("a", "b", "c", "Z", "Y"))
dtm_conform(special3, columns = c("a", "b", "Z"))

dtm_conform(special3, rows = c("doc_1"))

dtm_conform(special3, rows = character())

dtm_conform(special3, columns = character())
dtm_conform(special3, rows = character(), columns = character())

dtm_cor Pearson Correlation for Sparse Matrices

Description

Pearson Correlation for Sparse Matrices. More memory and time-efficient than cor (as.matrix(x)).

34 dtm_remove_lowfreq

Usage
dtm_cor(x)
Arguments
X A matrix, potentially a sparse matrix such as a "dgCMatrix" object which is
returned by document_term_matrix
Value

a correlation matrix

See Also

document_term_matrix

Examples

X <- data.frame(

doc_id = c(1, 1, 2, 3, 4),

term = c("A", "C", "Z", "X", "G"),
freq = c(1, 5, 7, 10, @))

dtm <- document_term_matrix(x)
dtm_cor(dtm)

dtm_remove_lowfreq Remove terms occurring with low frequency from a Document-Term-
Matrix and documents with no terms

Description
Remove terms occurring with low frequency from a Document-Term-Matrix and documents with
no terms

Usage

dtm_remove_lowfreq(dtm, minfreq = 5, maxterms, remove_emptydocs = TRUE)

Arguments
dtm an object returned by document_term_matrix
minfreq integer with the minimum number of times the term should occur in order to
keep the term
maxterms integer indicating the maximum number of terms which should be kept in the

dtm. The argument is optional.
remove_emptydocs

logical indicating to remove documents containing no more terms after the term
removal is executed. Defaults to TRUE.

dtm_remove_sparseterms 35

Value

a sparse Matrix as returned by sparseMatrix where terms with low occurrence are removed and
documents without any terms are also removed

Examples
data(brussels_reviews_anno)
x <- subset(brussels_reviews_anno, xpos == "NN")
x <= x[, c("doc_id", "lemma")]

x <- document_term_frequencies(x)
dtm <- document_term_matrix(x)

Remove terms with low frequencies and documents with no terms

x <- dtm_remove_lowfreq(dtm, minfreq = 10)

dim(x)

x <- dtm_remove_lowfreq(dtm, minfreq = 10, maxterms = 25)

dim(x)

x <- dtm_remove_lowfreq(dtm, minfreq = 10, maxterms = 25, remove_emptydocs = FALSE)
dim(x)

dtm_remove_sparseterms
Remove terms with high sparsity from a Document-Term-Matrix

Description

Remove terms with high sparsity from a Document-Term-Matrix and remove documents with no
terms.
Sparsity indicates in how many documents the term is not occurring.

Usage

dtm_remove_sparseterms(dtm, sparsity = ©.99, remove_emptydocs = TRUE)

Arguments
dtm an object returned by document_term_matrix
sparsity numeric in 0-1 range indicating the sparsity percent. Defaults to 0.99 meaning

drop terms which occur in less than 1 percent of the documents.
remove_emptydocs

logical indicating to remove documents containing no more terms after the term

removal is executed. Defaults to TRUE.

Value

a sparse Matrix as returned by sparseMatrix where terms with high sparsity are removed and
documents without any terms are also removed

36 dtm_remove_terms

Examples

data(brussels_reviews_anno)

x <- subset(brussels_reviews_anno, xpos == "NN")
x <- x[, c("doc_id", "lemma")]

x <- document_term_frequencies(x)

dtm <- document_term_matrix(x)

Remove terms with low frequencies and documents with no terms
x <- dtm_remove_sparseterms(dtm, sparsity = 0.99)

dim(x)
x <- dtm_remove_sparseterms(dtm, sparsity = 0.99, remove_emptydocs = FALSE)
dim(x)
dtm_remove_terms Remove terms from a Document-Term-Matrix and keep only docu-
ments which have a least some terms
Description

Remove terms from a Document-Term-Matrix and keep only documents which have a least some
terms

Usage

dtm_remove_terms(dtm, terms, remove_emptydocs = TRUE)

Arguments
dtm an object returned by document_term_matrix
terms a character vector of terms which are in colnames(dtm) and which should be

removed

remove_emptydocs
logical indicating to remove documents containing no more terms after the term
removal is executed. Defaults to TRUE.

Value

a sparse Matrix as returned by sparseMatrix where the indicated terms are removed as well as
documents with no terms whatsoever

Examples

data(brussels_reviews_anno)

x <- subset(brussels_reviews_anno, xpos == "NN")
x <= x[, c("doc_id", "lemma")]

x <- document_term_frequencies(x)

dtm <- document_term_matrix(x)

dtm_remove_tfidf 37

dim(dtm)

x <- dtm_remove_terms(dtm, terms = c("appartement”, "casa"”, "centrum”, "ciudad"))

dim(x)

X <- dtm_remove_terms(dtm, terms = c("appartement”, "casa”", "centrum”, "ciudad"),

remove_emptydocs = FALSE)
dim(x)
dtm_remove_tfidf Remove terms from a Document-Term-Matrix and documents with no
terms based on the term frequency inverse document frequency

Description

Remove terms from a Document-Term-Matrix and documents with no terms based on the term
frequency inverse document frequency. Either giving in the maximum number of terms (argument
top), the tfidf cutoff (argument cutoff) or a quantile (argument prob)

Usage

dtm_remove_tfidf(dtm, top, cutoff, prob, remove_emptydocs = TRUE)

Arguments
dtm an object returned by document_term_matrix
top integer with the number of terms which should be kept as defined by the highest
mean tfidf
cutoff numeric cutoff value to keep only terms in dtm where the tfidf obtained by
dtm_tfidf is higher than this value
prob numeric quantile indicating to keep only terms in dtm where the tfidf obtained

by dtm_tfidf is higher than the prob percent quantile

remove_emptydocs
logical indicating to remove documents containing no more terms after the term
removal is executed. Defaults to TRUE.

Value

a sparse Matrix as returned by sparseMatrix where terms with high tfidf are kept and documents
without any remaining terms are removed

Examples
data(brussels_reviews_anno)
x <- subset(brussels_reviews_anno, xpos == "NN")
x <= x[, c("doc_id", "lemma")]

x <- document_term_frequencies(x)
dtm <- document_term_matrix(x)
dtm <- dtm_remove_lowfreq(dtm, minfreq = 10)

38

dtm_reverse

dim(dtm)

Keep only terms with high tfidf

X <- dtm_remove_tfidf(dtm, top=50)

dim(x)

x <- dtm_remove_tfidf(dtm, top=50, remove_emptydocs = FALSE)
dim(x)

Keep only terms with tfidf above 1.1
X <- dtm_remove_tfidf(dtm, cutoff=1.1)
dim(x)

Keep only terms with tfidf above the 60 percent quantile
x <- dtm_remove_tfidf(dtm, prob=0.6)
dim(x)

dtm_reverse Inverse operation of the document_term_matrix function

Description

Inverse operation of the document_term_matrix function. Creates frequency table which contains
1 row per document/term

Usage

dtm_reverse(x)

Arguments

X an object as returned by document_term_matrix

Value

a data.frame with columns doc_id, term and freq where freq is just the value in each cell of the x

See Also

document_term_matrix

Examples

x <- data.frame(

doc_id = c(1, 1, 2, 3, 4),

term = c("A", "C", "z", "X", "G"),
freq = c(1, 5, 7, 10, 0))

dtm <- document_term_matrix(x)
dtm_reverse(dtm)

dtm_sample 39

dtm_sample Random samples and permutations from a Document-Term-Matrix

Description

Sample the specified number of rows from the Document-Term-Matrix using either with or without
replacement.

Usage

dtm_sample(dtm, size = nrow(dtm), replace = FALSE, prob = NULL)

Arguments
dtm a document term matrix of class dgCMatrix (which can be an object returned by
document_term_matrix)
size a positive number, the number of rows to sample
replace should sampling be with replacement
prob a vector of probability weights, one for each row of x
Value

dtm with as many rows as specified in size

Examples

x <- list(docl = c("aa", "bb", "cc", "aa", "b"),
doc2 = c("bb", "bb", "dd", ""),
doc3 = character(),
doc4 = c("cc"”, NA),
doc5 = character())
dtm <- document_term_matrix(x)
dtm_sample(dtm, size = 2)
dtm_sample(dtm, size = 3)
dtm_sample(dtm, size = 2)
dtm_sample(dtm, size = 8, replace = TRUE)
dtm_sample(dtm, size = 8, replace = TRUE, prob = c(1, 1, 0.01, 0.5, 0.01))

40 dtm_svd_similarity

dtm_svd_similarity Semantic Similarity to a Singular Value Decomposition

Description

Calculate the similarity of a document term matrix to a set of terms based on a Singular Value
Decomposition (SVD) embedding matrix.

This can be used to easily construct a sentiment score based on the latent scale defined by a set of
positive or negative terms.

Usage

dtm_svd_similarity(
dtm,
embedding,
weights,
terminology = rownames(embedding),
type = c("cosine”, "dot")

)
Arguments
dtm a sparse matrix such as a "dgCMatrix" object which is returned by document_term_matrix
containing frequencies of terms for each document
embedding a matrix containing the v element from an singular value decomposition with
the right singular vectors. The rownames of that matrix should contain terms
which are available in the colnames(dtm). See the examples.
weights a numeric vector with weights giving your definition of which terms are positive
or negative, The names of this vector should be terms available in the rownames
of the embedding matrix. See the examples.
terminology a character vector of terms to limit the calculation of the similarity for the dtm to
the linear combination of the weights. Defaults to all terms from the embedding
matrix.
type either ’cosine’ or ’dot’ indicating to respectively calculate cosine similarities
or inner product similarities between the dtm and the SVD embedding space.
Defaults to ’cosine’.
Value

an object of class ’svd_similarity’ which is a list with elements

» weights: The weights used. These are scaled to sum up to 1 as well on the positive as the
negative side

* type: The type of similarity calculated (either "cosine’ or ’dot’)

dtm_svd_similarity 41

* terminology: A data.frame with columns term, freq and similarity where similarity indicates
the similarity between the term and the SVD embedding space of the weights and freq is how
frequently the term occurs in the dtm. This dataset is sorted in descending order by similarity.

* similarity: A data.frame with columns doc_id and similarity indicating the similarity between
the dtm and the SVD embedding space of the weights. The doc_id is the identifier taken from
the rownames of dtm.

* scale: A list with elements terminology and weights indicating respectively the similarity in
the SVD embedding space between the terminology and each of the weights and between
the weight terms itself

See Also

https://en.wikipedia.org/wiki/Latent_semantic_analysis

Examples
data("brussels_reviews_anno”, package = "udpipe"”)
x <- subset(brussels_reviews_anno, language %in% "nl" & (upos %in% "ADJ" | lemma %in% "niet"))
dtm <- document_term_frequencies(x, document = "doc_id"”, term = "lemma")

dtm <- document_term_matrix(dtm)
dtm <- dtm_remove_lowfreq(dtm, minfreq = 3)

Function performing Singular Value Decomposition on sparse/dense data
dtm_svd <- function(dtm, dim = 5, type = c("RSpectra”, "svd"), ...){
type <- match.arg(type)
if(type == "svd"){
SVD <- svd(dtm, nu = @, nv = dim, ...)
Yelse if(type == "RSpectra”){
#Uncomment this if you want to use the faster sparse SVD by RSpectra
#SVD <- RSpectra::svds(dtm, nu = @, k = dim, ...)
3
rownames (SVD$v) <- colnames(dtm)
SVD$v
3
#embedding <- dtm_svd(dtm, dim = 5)
embedding <- dtm_svd(dtm, dim = 5, type = "svd")

Define positive / negative terms and calculate the similarity to these
weights <- setNames(c(1, 1, 1, 1, -1, -1, -1, -1),

c("fantastisch”, "schoon”, "vriendelijk”, "net”,

"lawaaiig"”, "lastig"”, "niet”, "slecht"))

scores <- dtm_svd_similarity(dtm, embedding = embedding, weights = weights)
scores
str(scores$similarity)
hist(scores$similarity$similarity)

plot(scores$terminology$similarity_weight, log(scores$terminology$freq),
type = "n")

text(scores$terminology$similarity_weight, log(scores$terminology$freq),
labels = scores$terminology$term)

https://en.wikipedia.org/wiki/Latent_semantic_analysis

42

Not run:

More elaborate example using word2vec

building word2vec model on all Dutch texts,
finding similarity of dtm to adjectives only
set.seed(123)

library(word2vec)

text <- subset(brussels_reviews_anno, language == "nl")

text <- paste.data.frame(text, term = "lemma”, group = "doc_id")

text <- text$lemma

model <- word2vec(text, dim = 10, iter = 20, type = "cbow", min_count = 1)
predict(model, newdata = names(weights), type = "nearest”, top_n = 3)

embedding <- as.matrix(model)

End(Not run)
data(brussels_reviews_w2v_embeddings_lemma_nl)
embedding <- brussels_reviews_w2v_embeddings_lemma_nl

dtm_tfidf

adjective <- subset(brussels_reviews_anno, language %in% "nl" & upos %in% "ADJ")

adjective <- txt_freq(adjective$lemma)
adjective <- subset(adjective, freq >= 5 & nchar(key) > 1)
adjective <- adjective$key

scores <- dtm_svd_similarity(dtm, embedding, weights = weights, type = "dot",

terminology = adjective)

scores
plot(scores$terminology$similarity_weight, log(scores$terminology$freq),
type = "n")

text(scores$terminology$similarity_weight, log(scores$terminology$freq),
labels = scores$terminology$term, cex = 0.8)

dtm_tfidf Term Frequency - Inverse Document Frequency calculation

Description

Term Frequency - Inverse Document Frequency calculation. Averaged by each term.

Usage

dtm_tfidf (dtm)

Arguments

dtm an object returned by document_term_matrix

Value

a vector with tfidf values, one for each term in the dtm matrix

keywords_collocation 43

Examples

data(brussels_reviews_anno)

x <- subset(brussels_reviews_anno, xpos == "NN")
x <= x[, c("doc_id", "lemma")]

x <- document_term_frequencies(x)

dtm <- document_term_matrix(x)

Calculate tfidf

tfidf <- dtm_tfidf(dtm)

hist(tfidf, breaks = "scott")
head(sort(tfidf, decreasing = TRUE))
head(sort(tfidf, decreasing = FALSE))

keywords_collocation Extract collocations - a sequence of terms which follow each other

Description

Collocations are a sequence of words or terms that co-occur more often than would be expected by
chance. Common collocation are adjectives + nouns, nouns followed by nouns, verbs and nouns,
adverbs and adjectives, verbs and prepositional phrases or verbs and adverbs.

This function extracts relevant collocations and computes the following statistics on them which are
indicators of how likely two terms are collocated compared to being independent.

* PMI (pointwise mutual information): log2(P(w1w2) / P(w1) P(w2))
e MD (mutual dependency): log2(P(w1w2)*2 / P(w1) P(w2))
* LFMD (log-frequency biased mutual dependency): MD + log2(P(w1w?2))
As natural language is non random - otherwise you wouldn’t understand what I’m saying, most of

the combinations of terms are significant. That’s why these indicators of collocation are merely
used to order the collocations.

Usage
keywords_collocation(x, term, group, ngram_max = 2, n_min = 2, sep =" ")
collocation(x, term, group, ngram_max = 2, n_min = 2, sep = " ")
Arguments
X a data.frame with one row per term where the sequence of the terms correspond
to the natural order of a text. The data frame x should also contain the columns
provided in term and group
term a character vector with 1 column from x which indicates the term
group a character vector with 1 or several columns from x which indicates for example

a document id or a sentence id. Collocations will be computed within this group
in order not to find collocations across sentences or documents for example.

44 keywords_collocation

ngram_max integer indicating the size of the collocations. Defaults to 2, indicating to com-
pute bigrams. If set to 3, will find collocations of bigrams and trigrams.

n_min integer indicating the frequency of how many times a collocation should at least
occur in the data in order to be returned. Defaults to 2.

sep character string with the separator which will be used to paste together terms
which are collocated. Defaults to a space: * °

Value

a data.frame with columns

* keyword: the terms which are combined as a collocation

* ngram: the number of terms which are combined

* left: the left term of the collocation

* right: the right term of the collocation

* freq: the number of times the collocation occurred in the data

* freq_left: the number of times the left element of the collocation occurred in the data

* freq_right: the number of times the right element of the collocation occurred in the data
e pmi: the pointwise mutual information

* md: mutual dependency

* Ifmd: log-frequency biased mutual dependency

Examples

data(brussels_reviews_anno)

X <- subset(brussels_reviews_anno, language %in% "fr")

colloc <- keywords_collocation(x, term = "lemma”, group = c("doc_id", "sentence_id"),
ngram_max = 3, n_min = 10)

head(colloc, 10)

Example on finding collocations of nouns preceded by an adjective
library(data.table)
X <- as.data.table(x)

x <- x[, xpos_previous := txt_previous(xpos, n = 1), by = list(doc_id, sentence_id)]
x <- x[, xpos_next ;= txt_next(xpos, n = 1), by = list(doc_id, sentence_id)]
x <- subset(x, (xpos %in% c("NN") & xpos_previous %in% c("JJ")) |

(xpos %in% c("JJ") & xpos_next %in% c("NN")))
colloc <- keywords_collocation(x, term = "lemma", group = c("doc_id", "sentence_id"),
ngram_max = 2, n_min = 2)
head(colloc)

keywords_phrases 45

keywords_phrases Extract phrases - a sequence of terms which follow each other based
on a sequence of Parts of Speech tags

Description

This function allows to extract phrases, like simple noun phrases, complex noun phrases or any
exact sequence of parts of speech tag patterns.

An example use case of this is to get all text where an adjective is followed by a noun or for example
to get all phrases consisting of a preposition which is followed by a noun which is next followed by
a verb. More complex patterns are shown in the details below.

Usage

keywords_phrases(
X,
term = x,
pattern,
is_regex = FALSE,
sep =" ",
ngram_max = 8,
detailed = TRUE

)
phrases(
X)
term = x,
pattern,
is_regex = FALSE,
sep = n n ,
ngram_max = 8,
detailed = TRUE
)
Arguments
X a character vector of Parts of Speech tags where we want to locate a relevant
sequence of POS tags as defined in pattern
term a character vector of the same length as x with the words or terms corresponding
to the tags in x
pattern In case is_regex is set to FALSE, pattern should be a character vector with a

sequence of POS tags to identify in x. The length of the character vector should
be bigger than 1.

In case is_regex is set to TRUE, this should be a regular expressions which
will be used on a concatenated version of x to identify the locations where these
regular expression occur. See the examples below.

46 keywords_phrases

is_regex logical indicating if pattern can be considered as a regular expression or if it is
just a character vector of POS tags. Defaults to FALSE, indicating pattern is
not a regular expression.

sep character indicating how to collapse the phrase of terms which are found. De-
faults to using a space.

ngram_max an integer indicating to allow phrases to be found up to ngram maximum number
of terms following each other. Only used if is_regex is set to TRUE. Defaults to
8.
detailed logical indicating to return the exact positions where the phrase was found (set to
TRUE) or just how many times each phrase is occurring (set to FALSE). Defaults
to TRUE.
Details

Common phrases which you might be interested in and which can be supplied to pattern are

* Simple noun phrase: "(AIN)*N(P+D*(AIN)*N)*"
 Simple verb Phrase: "((AIN)*N(P+D*(AIN)*N)*P*(MIV)*V(MIV)*I(MIV)*V(MIV)*D*(AIN)*N(P+D*(AIN)*N)*I(M
* Noun hrase with coordination conjuction: "((A(CA)*IN)*N((P(CP)*)+(D(CD)*)*(A(CA)*IN)*N)*(C(D(CD)*)*(A(CA
* Verb phrase with coordination conjuction: "(((A(CA)*IN)*N((P(CP)*)+(D(CD)*)*(A(CA)*IN)*N)*(C(D(CD)*)*(A(C
See the examples.
Mark that this functionality is also implemented in the phrasemachine package where it is imple-

mented using plain R code, while the implementation in this package uses a more quick Rcpp
implementation for extracting these kind of regular expression like phrases.

Value
If argument detailed is set to TRUE a data.frame with columns
» keyword: the phrase which corresponds to the collapsed terms of where the pattern was found
* ngram: the length of the phrase
e pattern: the pattern which was found

* start: the starting index of x where the pattern was found

* end: the ending index of x where the pattern was found

If argument detailed is set to FALSE will return aggregate frequency statistics in a data.frame
containing the columns keyword, ngram and freq (how many time it is occurring)

See Also

as_phrasemachine

keywords_rake 47

Examples

data(brussels_reviews_anno, package = "udpipe")
x <- subset(brussels_reviews_anno, language %in% "fr")

Find exactly this sequence of POS tags

np <- keywords_phrases(x$xpos, pattern = c(”"DT"”, "NN”, "VB”, "RB", "JJ"), sep = "-")
head(np)

np <- keywords_phrases(x$xpos, pattern = c("DT"”, "NN", "VB", "RB", "JJ"), term = x$token)
head(np)

Find noun phrases with the following regular expression: (A|N)+N(P+Dx(A|N)*N)x*
x$phrase_tag <- as_phrasemachine(x$xpos, type = "penn-treebank”)
nounphrases <- keywords_phrases(x$phrase_tag, term = x$token,
pattern = "(A|[N)+N(P+Dx(A|[N)*N)*" 6 is_regex = TRUE,
ngram_max = 4,
detailed = TRUE)
head(nounphrases, 10)
head(sort(table(nounphrases$keyword), decreasing=TRUE), 20)

Find frequent sequences of POS tags

library(data.table)

x <- as.data.table(x)

x <- x[, pos_sequence := txt_nextgram(x = xpos, n = 3), by = list(doc_id, sentence_id)]
tail(sort(table(x$pos_sequence)))

np <- keywords_phrases(x$xpos, term = x$token, pattern = c("IN", "DT", "NN"))

head(np)
keywords_rake Keyword identification using Rapid Automatic Keyword Extraction
(RAKE)
Description

RAKE is a basic algorithm which tries to identify keywords in text. Keywords are defined as a
sequence of words following one another.
The algorithm goes as follows.

* candidate keywords are extracted by looking to a contiguous sequence of words which do not
contain irrelevant words

* ascore is being calculated for each word which is part of any candidate keyword, this is done
by
— among the words of the candidate keywords, the algorithm looks how many times each
word is occurring and how many times it co-occurs with other words

— each word gets a score which is the ratio of the word degree (how many times it co-occurs
with other words) to the word frequency

* a RAKE score for the full candidate keyword is calculated by summing up the scores of each
of the words which define the candidate keyword

The resulting keywords are returned as a data.frame together with their RAKE score.

48

Usage

keywords_rake(

X,
term,
group,

keywords_rake

relevant = rep(TRUE, nrow(x)),
ngram_max = 2,

n_min = 2,
sep - n n

Arguments

X

term

group

relevant

ngram_max

n_min

sep

Value

a data.frame with one row per term as returned by as.data. frame (udpipe_annotate(...))

character string with a column in the data frame x, containing 1 term per row.
To be used if x is a data.frame.

a character vector with 1 or several columns from x which indicates for example
a document id or a sentence id. Keywords will be computed within this group
in order not to find keywords across sentences or documents for example.

a logical vector of the same length as nrow(x), indicating if the word in the
corresponding row of x is relevant or not. This can be used to exclude stop-
words from the keywords calculation or for selecting only nouns and adjectives
to find keywords (for example based on the Parts of Speech upos output from
udpipe_annotate).

integer indicating the maximum number of words that there should be in each
keyword

integer indicating the frequency of how many times a keywords should at least
occur in the data in order to be returned. Defaults to 2.

character string with the separator which will be used to paste together the
terms which define the keywords. Defaults to a space: * °.

a data.frame with columns keyword, ngram and rake which is ordered from low to high rake

* keyword: the keyword

* ngram: how many terms are in the keyword

* freq: how many times did the keyword occur

* rake: the ratio of the degree to the frequency as explained in the description, summed up for
all words from the keyword

References

Rose, Stuart & Engel, Dave & Cramer, Nick & Cowley, Wendy. (2010). Automatic Keyword Ex-
traction from Individual Documents. Text Mining: Applications and Theory. 1 -20. 10.1002/9780470689646.ch1.

paste.data.frame 49

Examples

data(brussels_reviews_anno)

x <- subset(brussels_reviews_anno, language == "nl")

keywords <- keywords_rake(x = x, term = "lemma”, group = "doc_id",
relevant = x$xpos %in% c(”"NN", "JJ"))

head(keywords)

x <- subset(brussels_reviews_anno, language == "fr")

keywords <- keywords_rake(x = x, term = "lemma”, group = c("doc_id", "sentence_id"),
relevant = x$xpos %in% c("NN", "JJ"),
ngram_max = 10, n_min = 2, sep = "-"

head(keywords)

paste.data.frame Concatenate text of each group of data together
Description

This function is similar to paste but works on a data.frame, hence paste.data.frame. It concatenates
text belonging to groups of data together in one string. The function is the inverse operation of
strsplit.data.frame.

Usage
paste.data.frame(data, term, group, collapse =" ")
Arguments
data a data.frame or data.table
term a string with a column name or a character vector of column names from data
which you want to concatenate together using paste
group a string with a column name or a character vector of column names from data
indicating identifiers of groups. The text in term will be concatenated by group.
collapse a character string that you want to use to collapse the text data together. Defaults
to a single space.
Value

A data.frame with 1 row per group containing the columns from group and term where all the text
in term for each group will be paste-d together, separated by the collapse argument.

See Also

strsplit.data.frame, paste

50 predict. LDA_VEM

Examples

data(brussels_reviews_anno, package = "udpipe")
head(brussels_reviews_anno)
X <- paste.data.frame(brussels_reviews_anno,

term = "lemma”,
group = c("doc_id", "sentence_id"))

str(x)

X <- paste.data.frame(brussels_reviews_anno,
term = c("lemma”, "token"),
group = c("doc_id", "sentence_id"),
collapse = "-")

str(x)

predict.LDA_VEM Predict method for an object of class LDA_VEM or class LDA_Gibbs
Description

Gives either the predictions to which topic a document belongs or the term posteriors by topic
indicating which terms are emitted by each topic.

If you provide in newdata a document term matrix for which a document does not contain any text
and hence does not have any terms with nonzero entries, the prediction will give as topic prediction
NA values (see the examples).

Usage
S3 method for class 'LDA_VEM'
predict(
object,
newdata,
type = c("topics”, "terms"),
min_posterior = -1,
min_terms = 0,
labels,
)
S3 method for class 'LDA_Gibbs'
predict(
object,
newdata,
type = c("topics”, "terms"),
min_posterior = -1,
min_terms = 0,
labels,

predict. LDA_VEM

Arguments

object

newdata

type
min_posterior

min_terms

labels

Value

51

an object of class LDA_VEM or LDA_Gibbs as returned by LDA from the top-
icmodels package

a document/term matrix containing data for which to make a prediction
either “topic’ or terms’ for the topic predictions or the term posteriors

numeric in 0-1 range to output only terms emitted by each topic which have a
posterior probability equal or higher than min_posterior. Only used if type is
’terms’. Provide -1 if you want to keep all values.

integer indicating the minimum number of terms to keep in the output when
type is "terms’. Defaults to 0.

a character vector of the same length as the number of topics in the topic model.
Indicating how to label the topics. Only valid for type = "topic’. Defaults to
topic_prob_001 up to topic_prob_999.

further arguments passed on to topicmodels::posterior

* in case of type = "topic’: a data.table with columns doc_id, topic (the topic number to which
the document is assigned to), topic_label (the topic label) topic_prob (the posterior probability
score for that topic), topic_probdiff_2nd (the probability score for that topic - the probabil-
ity score for the 2nd highest topic) and the probability scores for each topic as indicated by
topic_labelyourownlabel

* ncase of type = "terms’: a list of data.frames with columns term and prob, giving the posterior
probability that each term is emitted by the topic

See Also

posterior-methods

Examples

Build document/term matrix on dutch nouns
data(brussels_reviews_anno)
data(brussels_reviews)

x <- subset(brussels_reviews_anno, language == "nl")
x <- subset(x, xpos %in% c("JJ"))
x <= x[, c("doc_id", "lemma")]

x <- document_term_frequencies(x)

dtm <- document_term_matrix(x)

dtm <- dtm_remove_lowfreq(dtm, minfreq = 10)
dtm <- dtm_remove_tfidf(dtm, top = 100)

Fit a topicmodel using VEM
library(topicmodels)
mymodel <- LDA(x = dtm, k = 4, method = "VEM")

Get topic terminology

52 strsplit.data.frame

terminology <- predict(mymodel, type = "terms”, min_posterior = .05, min_terms = 3)
terminology

Get scores alongside the topic model
dtm <- document_term_matrix(x, vocabulary = mymodel@terms)

scores <- predict(mymodel, newdata = dtm, type = "topics")
scores <- predict(mymodel, newdata = dtm, type = "topics”,
labels = c("mylabell”, "xyz", "app-location”, "newlabel”))
head(scores)
table(scores$topic)

table(scores$topic_label)
table(scores$topic, exclude = c())
table(scores$topic_label, exclude = c())

Fit a topicmodel using Gibbs

library(topicmodels)

mymodel <- LDA(x = dtm, k = 4, method = "Gibbs")

terminology <- predict(mymodel, type = "terms"”, min_posterior = .05, min_terms = 3)
scores <- predict(mymodel, type = "topics”, newdata = dtm)

strsplit.data.frame Obtain a tokenised data frame by splitting text alongside a regular
expression

Description

Obtain a tokenised data frame by splitting text alongside a regular expression. This is the inverse
operation of paste.data.frame.

Usage

strsplit.data.frame(
data,
term,

group,
split = "[[:space:]J[:punct:][:digit:]1]+",

)
Arguments
data a data.frame or data.table
term a character with a column name from data which you want to split into tokens
group a string with a column name or a character vector of column names from data

indicating identifiers of groups. The text in term will be split into tokens by
group.

syntaxpatterns-class 53

split a regular expression indicating how to split the term column. Defaults to split-
ting by spaces, punctuation symbols or digits. This will be passed onto strsplit.

further arguments passed on to strsplit

Value

A tokenised data frame containing one row per token.
This data.frame has the columns from group and term where the text in column term will be split
by the provided regular expression into tokens.

See Also

paste.data.frame, strsplit

Examples
data(brussels_reviews, package = "udpipe")
x <- strsplit.data.frame(brussels_reviews, term = "feedback”, group = "id")
head(x)

x <- strsplit.data.frame(brussels_reviews,
term = c("feedback”),
group = c("listing_id", "language"))

head(x)

x <- strsplit.data.frame(brussels_reviews, term = "feedback”, group = "id",
split = " ", fixed = TRUE)

head(x)

syntaxpatterns-class Experimental and undocumented querying of syntax patterns

Description

Currently undocumented

syntaxrelation-class Experimental and undocumented querying of syntax relationships

Description

Currently undocumented

54 txt_collapse

Usage

S4 method for signature 'syntaxrelation,logical'
el | e2

S4 method for signature 'logical,syntaxrelation’
el | e2

S4 method for signature 'syntaxrelation,logical'
el & e2

S4 method for signature 'logical,syntaxrelation'’

el & e2
Arguments
el Currently undocumented
e2 Currently undocumented
txt_collapse Collapse a character vector while removing missing data.
Description

Collapse a character vector while removing missing data.

Usage

txt_collapse(x, collapse = " ")
Arguments

X a character vector or a list of character vectors

collapse a character string to be used to collapse the vector. Defaults to a space: * °
Value

a character vector of length 1 with the content of x collapsed using paste

See Also

paste

Examples

txt_collapse(c(NA, "hello”, "world”, NA))

x <= list(a = c("h", "i"), b
c = character(), d

n

txt_collapse(x, collapse = " ")

c("some"”, "more", "text"),
NA)

txt_contains 55

txt_contains Check if text contains a certain pattern

Description

Look up text which has a certain pattern. This pattern lookup is performed by executing a regular
expression using grepl.

Usage
txt_contains(x, patterns, value = FALSE, ignore.case = TRUE, ...)
Arguments
X a character vector with text
patterns a regular expression which might be contained in x, a vector of these or a list of
pattern elements where the list elements include and exclude indicate to find
a pattern in x while excluding elements which have another pattern
value logical, indicating to return the elements of x where the pattern was found or
just a logical vector. Defaults to FALSE indicating to return a logical.
ignore.case logical, if set to FALSE, the pattern matching is case sensitive and if TRUE, case
is ignored during matching. Passed on to grepl
other parameters which can be passed on to grepl e.g. fixed/perl/useBytes
Value

a logical vector of the same length as x indicating if one of the patterns was found in x.
Or the vector of elements of x where the pattern was found in case argument value is set to TRUE

See Also

grepl

Examples

x <= c("The cats are eating catfood”,
"Our cat is eating the catfood”,
"the dog eats catfood, he likes it",
NA)
txt_contains(x, patterns = c("cat”, "dog"))
txt_contains(x, patterns = c("cat”, "dog"), value = TRUE)
txt_contains(x, patterns = c("eats"), value = TRUE)
txt_contains(x, patterns = c("*The"), ignore.case = FALSE, value = TRUE)
txt_contains(x, patterns = list(include = c("cat"), exclude = c("dog")),
value = TRUE)
txt_contains(x, "cat") & txt_contains(x, "dog")

56 txt_context

txt_context Based on a vector with a word sequence, get n-grams (looking forward
+ backward)

Description

If you have annotated your text using udpipe_annotate, your text is tokenised in a sequence of
words. Based on this vector of words in sequence getting n-grams comes down to looking at the
previous/next word and the subsequent previous/next word andsoforth. These words can be pasted
together to form an n-gram.

Usage
txt_context(x, n = c(-1, @, 1), sep = " ", na.rm = FALSE)
Arguments
X a character vector where each element is just 1 term or word
n an integer vector indicating how many terms to look back and ahead
sep a character element indicating how to paste the subsequent words together
na.rm logical, if set to TRUE, will keep all text even if it can not look back/ahead the
amount specified by n. If set to FALSE, will have a resulting value of NA if at
least one element is NA or it can not look back/ahead the amount specified by n.
Value

a character vector of the same length of x with the n-grams

See Also

txt_paste, txt_next, txt_previous, shift

Examples

x <= c("We", "walked", "anxiously"”, "to", "the", "doctor”, "!")

Look 1 word before + word itself

y <- txt_context(x, n = c(-1, @), na.rm = FALSE)
data.frame(x, y)

Look 1 word before + word itself + 1 word after
y <- txt_context(x, n = c(-1, @, 1), na.rm = FALSE)
data.frame(x, y)

y <- txt_context(x, n = c(-1, @, 1), na.rm = TRUE)
data.frame(x, y)

Look 2 words before + word itself + 1 word after
even if not all words are there
y <- txt_context(x, n = c(-2, -1, @, 1), na.rm = TRUE, sep = "_")

txt_count 57

data.frame(x, y)
y <- txt_context(x, n = c(-2, -1, 1, 2), na.rm = FALSE, sep = "_")
data.frame(x, y)

x <= c("We", NA, NA, "to", "the", "doctor”, "!")
y <- txt_context(x, n = c(-1, @), na.rm = FALSE)
data.frame(x, y)

y <- txt_context(x, n = c(-1, @), na.rm = TRUE)
data.frame(x, y)

library(data.table)

data(brussels_reviews_anno, package = "udpipe")

X <- as.data.table(brussels_reviews_anno)

X <- subset(x, doc_id %in% txt_sample(unique(x$doc_id), n = 10))

X <- x[, context := txt_context(lemma), by = list(doc_id, sentence_id)]

head(x, 20)

x$term <- sprintf("%s/%s", x$lemma, x$upos)

X <- x[, context := txt_context(term), by = list(doc_id, sentence_id)]

head(x, 20)

txt_count Count the number of times a pattern is occurring in text

Description

Count the number of times a pattern is occurring in text. Pattern counting is performed by executing
a regular expression using gregexpr and checking how many times the regular expression occurs.

Usage
txt_count(x, pattern, ...)
Arguments
X a character vector with text
pattern a text pattern which might be contained in x
other arguments, passed on to gregexpr
Value

an integer vector of the same length as x indicating how many times the pattern is occurring in x

Examples

x <- c("abracadabra”, "ababcdab", NA)
txt_count(x, pattern = "ab")

txt_count(x, pattern = "AB", ignore.case = TRUE)
txt_count(x, pattern = "AB", ignore.case = FALSE)

58 txt_grepl

txt_freq Frequency statistics of elements in a vector

Description

Frequency statistics of elements in a vector

Usage

txt_freq(x, exclude = c(NA, NaN), order = TRUE)

Arguments
X a vector
exclude logical indicating to exclude values from the table. Defaults to NA and NaN.
order logical indicating to order the resulting dataset in order of frequency. Defaults
to TRUE.
Value

a data.frame with columns key, freq and freq_pct indicating the how many times each value in the
vector X is occurring

Examples

x <- sample(LETTERS, 1000, replace = TRUE)
txt_freq(x)

x <- factor(x, levels = LETTERS)
txt_freq(x, order = FALSE)

txt_grepl Look up a multiple patterns and indicate their presence in text

Description

A variant of grepl which allows to specify multiple regular expressions and allows to combine the
result of these into one logical vector.

You can specify how to combine the results of the regular expressions by specifying an aggregate
function like all, any, sum.

txt_grepl

Usage

txt_grepl(
X,
pattern,
FUN = all,
ignore.case =
perl = FALSE,
fixed = FALSE

59

FALSE,

’

useBytes = FALSE,

Arguments

X
pattern

FUN

ignore.case
perl
fixed

useBytes

Value

a character vector
a character vector containing one or several regular expressions

a function to apply to combine the results ot the different regular expressions for
each element of x. Defaults to all.

passed on to grepl
passed on to grepl
passed on to grepl
passed on to grepl

further arguments passed on to FUN

a logical vector with the same length as x with the result of the call to FUN applied elementwise to
each result of grepl for each pattern

See Also

grepl

Examples

X <- c("--A--", "--B--", "--ABC--", "--AC--", "Z")
txt_grepl(x, pattern = c("A", "C"), FUN = all)
txt_grepl(x, pattern = c("A", "C"), FUN = any)
txt_grepl(x, pattern = c("A", "C"), FUN = sum)

data.frame(x = x,

A_and_C = txt_grepl(x, pattern = c("A", "C"), FUN = all),

A_or_C
A_C_n

= txt_grepl(x, pattern = c("A", "C"), FUN
= txt_grepl(x, pattern = c("A", "C"), FUN

any),
sum))

txt_grepl(x, pattern = "A|C")

60 txt_next

txt_highlight Highlight words in a character vector

Description

Highlight words in a character vector. The words provided in terms are highlighted in the text by
wrapping it around the following charater: |. So ’I like milk and sugar in my coffee’ would give 1
like Imilkl and sugar in my coffee’ if you want to highlight the word milk

Usage

txt_highlight(x, terms)

Arguments

X a character vector with text

terms a vector of words to highlight which appear in x
Value

A character vector with the same length of x where the terms provided in terms are put in between
Il to highlight them

Examples

x <= "I like milk and sugar in my coffee.”
txt_highlight(x, terms = "sugar")
txt_highlight(x, terms = c("milk”, "my"))

txt_next Get the n-th next element of a vector

Description

Get the n-th next element of a vector

Usage

txt_next(x, n = 1)

Arguments

X a character vector where each element is just 1 term or word

n an integer indicating how far to look next. Defaults to 1.

txt_nextgram 61

Value

a character vector of the same length of x with the next element

See Also

shift

Examples

X <- sprintf("%s%s", LETTERS, 1:26)
txt_next(x, n = 1)

data.frame(word = x,
word_next1 = txt_next(x, n = 1),
word_next2 = txt_next(x, n = 2),
stringsAsFactors = FALSE)

txt_nextgram Based on a vector with a word sequence, get n-grams (looking for-
ward)

Description

If you have annotated your text using udpipe_annotate, your text is tokenised in a sequence of
words. Based on this vector of words in sequence getting n-grams comes down to looking at the
next word and the subsequent word andsoforth. These words can be pasted together to form an
n-gram containing the current word, the next word up, the subsequent word, ...

Usage
txt_nextgram(x, n =2, sep =" ")
Arguments
X a character vector where each element is just 1 term or word
n an integer indicating the ngram. Values of 1 will keep the x, a value of 2 will
append the next term to the current term, a value of 3 will append the subsequent
term and the term following that term to the current term
sep a character element indicating how to paste the subsequent words together
Value

a character vector of the same length of x with the n-grams

See Also

paste, shift

62

Examples

X <- sprintf("%s%s", LETTERS, 1:26)
txt_nextgram(x, n = 2)

data.frame(words = x,
bigram = txt_nextgram(x, n = 2),

trigram = txt_nextgram(x, n = 3, sep = "-"),
quatrogram = txt_nextgram(x, n = 4, sep = ""),

stringsAsFactors = FALSE)

x <= c("A1", "A2", "A3", NA, "A4", "A5")
data.frame(x,

bigram = txt_nextgram(x, n = 2, sep = "_"),

stringsAsFactors = FALSE)

txt_overlap

txt_overlap Get the overlap between 2 vectors

Description

Get the overlap between 2 vectors

Usage

txt_overlap(x, y)

Arguments
X a vector
y a vector
Value

a vector with elements of x which are also found in y

Examples

x <= c("a", "b", "c")

y <= c("b", "c", "e", "z")
txt_overlap(x, y)
txt_overlap(y, x)

txt_paste

63

txt_paste

Concatenate strings with options how to handle missing data

Description

NA friendly version for concatenating string

Usage

txt_paste(...,

Arguments

collapse

na.rm

Value

a character vector

See Also

paste

Examples

x <- c(1, 2, 3,
y <= c("a", "b",
paste(x, y, sep
txt_paste(x, vy,
txt_paste(x, vy,

x <= c(NA, "a",
y <= e(h1v, 27,
7z <- C(”_”, u*u’
txt_paste(x, vy,
txt_paste(x, vy,
txt_paste(x, vy,

collapse = " ", na.rm = FALSE)

character vectors

)

a character string to be used to paste the vectors together. Defaults to a space:

logical, if set to TRUE, will replace NA with 7. If set to FALSE, will have a
resulting value of NA if at least one element is NA, in a similar spirit as mean.
Defaults to FALSE.

NA, NA)

"c", NA, "OK")
= 7"
collapse = "-", na.rm = TRUE)
collapse = "-", na.rm = FALSE)

"oy

NA)

NA)
z, collapse = "", na.rm = TRUE)
z, "_____ ", collapse = "", na.rm = TRUE)
z, "_____ ", collapse = "", na.rm = FALSE)

64 txt_previousgram

txt_previous Get the n-th previous element of a vector

Description

Get the n-th previous element of a vector

Usage

txt_previous(x, n = 1)

Arguments
X a character vector where each element is just 1 term or word
n an integer indicating how far to look back. Defaults to 1.
Value

a character vector of the same length of x with the previous element

See Also

shift

Examples

X <= sprintf("%s%s", LETTERS, 1:26)
txt_previous(x, n = 1)

data.frame(word = x,
word_previous1 = txt_previous(x, n = 1),
word_previous2 = txt_previous(x, n = 2),
stringsAsFactors = FALSE)

txt_previousgram Based on a vector with a word sequence, get n-grams (looking back-
ward)

Description

If you have annotated your text using udpipe_annotate, your text is tokenised in a sequence of
words. Based on this vector of words in sequence getting n-grams comes down to looking at the
previous word and the subsequent previous word andsoforth. These words can be pasted together
to form an n-gram containing the second previous word, the previous word, the current word ...

txt_recode 65

Usage
txt_previousgram(x, n = 2, sep =" ")
Arguments
X a character vector where each element is just 1 term or word
n an integer indicating the ngram. Values of 1 will keep the x, a value of 2 will
append the previous term to the current term, a value of 3 will append the sec-
ond previous term term and the previous term preceding the current term to the
current term
sep a character element indicating how to paste the subsequent words together
Value

a character vector of the same length of x with the n-grams

See Also

paste, shift

Examples

X <= sprintf("%s%s", LETTERS, 1:26)
txt_previousgram(x, n = 2)

data.frame(words = x,
bigram = txt_previousgram(x, n = 2),
trigram = txt_previousgram(x, n = 3, sep = "-"),
quatrogram = txt_previousgram(x, n = 4, sep = ""),
stringsAsFactors = FALSE)

x <= c("A1", "A2", "A3", NA, "A4", "A5")

data.frame(x,
bigram = txt_previousgram(x, n = 2, sep = "_"),
stringsAsFactors = FALSE)

txt_recode Recode text to other categories

Description

Recode text to other categories. Values of x which correspond to from[i] will be recoded to to[i]

Usage

txt_recode(x, from = c(), to = c(), na.rm = FALSE)

66 txt_recode_ngram

Arguments
X a character vector
from a character vector with values of x which you want to recode
to a character vector with values of you want to use to recode to where you want
to replace values of x which correspond to from[i] to to[i]
na.rm logical, if set to TRUE, will put all values of x which have no matching value in
from to NA. Defaults to FALSE
Value

a character vector of the same length of x where values of x which are given in from will be replaced
by the corresponding element in to

See Also

match

Examples

x <- c("NOUN", "VERB", "NOUN", "ADV")
txt_recode(x = x,
from = c("VERB", "ADV"),
to = c("conjugated verb"”, "adverb"))
txt_recode(x = x,
from = c("VERB", "ADV"),
to = c("conjugated verb”, "adverb"),
na.rm = TRUE)
txt_recode(x = x,
from = c("VERB"”, "ADV”, "NOUN"),
to = c("conjugated verb”, "adverb"”, "noun"),
na.rm = TRUE)

txt_recode_ngram Recode words with compound multi-word expressions

Description

Replace in a character vector of tokens, tokens with compound multi-word expressions. So that
c("New", "York") will be c("New York", NA).

Usage

txt_recode_ngram(x, compound, ngram, sep = " ")

txt_recode_ngram

Arguments

X

compound

ngram

sep

Value

67

a character vector of words where you want to replace tokens with compound
multi-word expressions. This is generally a character vector as returned by the
token column of as.data.frame(udpipe_annotate(txt))

a character vector of compound words multi-word expressions indicating terms
which can be considered as one word. For example c('New York', 'Brussels
Hoofdstedelijk Gewest').

a integer vector of the same length as compound indicating how many terms there
are in the specific compound multi-word expressions given by compound, where
compound[i] contains ngram[i] words. So if x is c('New York', 'Brussels
Hoofdstedelijk Gewest'), the ngram would be c(2, 3)

separator used when the compounds were constructed by combining the words
together into a compound multi-word expression. Defaults to a space: *’

the same character vector x where elements in x will be replaced by compound multi-word expres-
sion. If will give preference to replacing with compounds with higher ngrams if these occur. See

the examples.

See Also

txt_nextgram

Examples
x <= c("I", "went”, "to”, "New”, "York”, "City", "on", "holiday”, ".")
y <- txt_recode_ngram(x, compound = "New York”, ngram = 2, sep = " ")

data.frame(x, y)

keyw <- data.frame(keyword = c("New-York"”, "New-York-City"), ngram = c(2, 3))
y <- txt_recode_ngram(x, compound = keyw$keyword, ngram = keyw$ngram, sep = "-")

data.frame(x, y)

Example replacing adjectives followed by a noun with the full compound word
data(brussels_reviews_anno)

x <- subset(brussels_reviews_anno, language == "nl")

keyw <- keywords_phrases(x$xpos, term = x$token, pattern = "JINN",

head(keyw)

is_regex = TRUE, detailed = FALSE)

x$term <- txt_recode_ngram(x$token, compound = keyw$keyword, ngram = keyw$ngram)
head(x[, c("token”, "term", "xpos")1, 12)

68

txt_sentiment

txt_sample Boilerplate function to sample one element from a vector.

Description

Boilerplate function to sample one element from a vector.

Usage

txt_sample(x, na.exclude = TRUE, n = 1)

Arguments
X a vector
na.exclude logical indicating to remove NA values before taking a sample
n integer indicating the number of items to sample from x
Value

one element sampled from the vector x

See Also

sample.int

Examples

txt_sample(c(NA, "hello”, "world"”, NA))

txt_sentiment Perform dictionary-based sentiment analysis on a tokenised data

frame

Description

This function identifies words which have a positive/negative meaning, with the addition of some
basic logic regarding occurrences of amplifiers/deamplifiers and negators in the neighbourhood of

the word which has a positive/negative meaning.

* If a negator is occurring in the neigbourhood, positive becomes negative or vice versa.

* If amplifiers/deamplifiers occur in the neigbourhood, these amplifier weight is added to the

sentiment polarity score.

txt_sentiment

69

This function took inspiration from qdap::polarity but was completely re-engineered to allow to
calculate similar things on a udpipe-tokenised dataset. It works on a sentence level and the nega-
tor/amplification logic can not surpass a boundary defined by the PUNCT upos parts of speech tag.

Note that if you prefer to build a supervised model to perform sentiment scoring you might be in-
terested in looking at the ruimtehol R package https://github.com/bnosac/ruimtehol instead.

Usage
txt_sentiment(
X7
term = "lemma”,

polarity_terms,

polarity_negators = character(),
polarity_amplifiers = character(),
polarity_deamplifiers = character(),
amplifier_weight = 0.8,

n_before = 4,

n_after = 2,
constrain =

Arguments
X
term

polarity_terms

FALSE

a data.frame with the columns doc_id, paragraph_id, sentence_id, upos and the
column as indicated in term. This is exactly what udpipe returns.

a character string with the name of a column of x where you want to apply to
sentiment scoring upon

data.frame containing terms which have positive or negative meaning. This data
frame should contain the columns term and polarity where term is of type char-
acter and polarity can either be 1 or -1.

polarity_negators

a character vector of words which will invert the meaning of the polarity_terms
such that -1 becomes 1 and vice versa

polarity_amplifiers

a character vector of words which amplify the polarity_terms

polarity_deamplifiers

a character vector of words which deamplify the polarity_terms

amplifier_weight

n_before

n_after

constrain

weight which is added to the polarity score if an amplifier occurs in the neigh-
bourhood

integer indicating how many words before the polarity_terms word one has
to look to find negators/amplifiers/deamplifiers to apply its logic

integer indicating how many words after the polarity_terms word one has to
look to find negators/amplifiers/deamplifiers to apply its logic

logical indicating to make sure the aggregated sentiment scores is between -1
and 1

https://github.com/bnosac/ruimtehol

70 txt_sentiment

Value
a list containing

* data: the x data.frame with 2 columns added: polarity and sentiment_polarity.

— The column polarity being just the polarity column of the polarity_terms dataset cor-
responding to the polarity of the term you apply the sentiment scoring

— The colummn sentiment_polarity is the value where the amplifier/de-amplifier/negator
logic is applied on.

* overall: a data.frame with one row per doc_id containing the columns doc_id, sentences,
terms, sentiment_polarity, terms_positive, terms_negative, terms_negation and terms_amplification
providing the aggregate sentiment_polarity score of the dataset x by doc_id as well as the ter-
minology causing the sentiment, the number of sentences and the number of non punctuation
terms in the document.

Examples

x <= c("I do not like whatsoever when an R package has soo many dependencies.”,
"Making other people install java is annoying,
as it is a really painful experience in classrooms.")
Not run:
Do the annotation to get the data.frame needed as input to txt_sentiment
anno <- udpipe(x, "english-gum")

End(Not run)

anno <- data.frame(doc_id = c(rep("doc1”, 14), rep("doc2"”, 18)),
paragraph_id = 1,
sentence_id = 1,

lemma = c("I", "do", "not"”, "like", "whatsoever”,
"when", "an", "R", "package",
"has", "soo"”, "many", "dependencies”, ".",
"Making”, "other", "people”, "install”,
"java", "is", "annoying”, ",", "as",
"it", "is", "a", "really", "painful”,
"experience”, "in", "classrooms”, "."),

upos = c("PRON", "AUX", "PART", "VERB", "PRON",
"SCONJ", "DET", "PROPN", "NOUN", "VERB",
"ADV", "ADJ", "NOUN", "PUNCT",
"VERB", "ADJ", "NOUN", "ADJ", "NOUN",
"AUX", "VERB", "PUNCT", "SCONJ", "PRON",
"AUX", "DET", "ADV", "ADJ", "NOUN",
"ADP", "NOUN", "PUNCT"),

stringsasFactors = FALSE)

scores <- txt_sentiment(x = anno,

term = "lemma”,
polarity_terms = data.frame(term = c("annoy”, "like", "painful"),
polarity = c(-1, 1, -1)),
polarity_negators = c("not”, "neither"),
polarity_amplifiers = c("pretty”, "many"”, "really”, "whatsoever"),
polarity_deamplifiers = c("slightly"”, "somewhat"))
scores$overall

scores$data

txt_show

scores <- txt_sentiment(x = anno,
term = "lemma”,
polarity_terms = data.frame(term = c("annoy”,

polarity_negators = c("not”, "neither"),

polarity_amplifiers = c("pretty”, "many"”, "really”, "whatsoever"),
polarity_deamplifiers = c("slightly"”, "somewhat"),

constrain = TRUE, n_before = 4,
n_after = 2, amplifier_weight = .8)
scores$overall
scores$data

"1ike", "painful”),
polarity = c(-1, 1, -1)),

71

txt_show Boilerplate function to cat only 1 element of a character vector.

Description

Boilerplate function to cat only 1 element of a character vector.

Usage

txt_show(x)

Arguments

X a character vector

Value
invisible
See Also

txt_sample

Examples

txt_show(c("hello \n\n\n world”, "world \n\n\n hello"))

72

txt_tagsequence

txt_tagsequence Identify a contiguous sequence of tags as 1 being entity

Description

This function allows to identify contiguous sequences of text which have the same label or which
follow the IOB scheme.

Named Entity Recognition or Chunking frequently follows the IOB tagging scheme where "B"
means the token begins an entity, "I" means it is inside an entity, "E" means it is the end of an entity
and "O" means it is not part of an entity. An example of such an annotation would be "New’, *York’,
*City’, *District” which can be tagged as ’B-LOC’, ’I-LOC’, "I-LOC’, ’E-LOC".

The function looks for such sequences which start with ’B-LOC’ and combines all subsequent labels
of the same tagging group into 1 category. This sequence of words also gets a unique identifier such
that the terms "New’, *York’, City’, ’District” would get the same sequence identifier.

Usage

txt_tagsequence(x, entities)

Arguments

X a character vector of categories in the sequence of occurring (e.g. B-LOC, I-
LOC, I-PER, B-PER, O, O, B-PER)

entities a list of groups, where each list element contains

e start: A length 1 character string with the start element identifying a se-
quence start. E.g. "B-LOC’

* labels: A character vector containing all the elements which are considered
being part of a same labelling sequence, including the starting element. E.g.
c('B-LOC', "I-LOC', "E-LOC")

The list name of the group defines the label that will be assigned to the entity. If
entities is not provided each possible value of x is considered an entity. See
the examples.

Value

a list with elements entity_id and entity where
* entity is a character vector of the same length as x containing entities, constructed by recoding
x to the names of names(entities)

* entity_id is an integer vector of the same length as x containing unique identifiers identfying
the compound label sequence such that e.g. the sequence 'B-LOC’, "I-LOC’, "I-LOC’, ’E-
LOC’ (New York City District) would get the same entity_id identifier.

See the examples.

udpipe 73

Examples

x <- data.frame(
token = c("The", "chairman”, "of", "the", "Nakitoma"”, "Corporation”,
"Donald”, "Duck", "went", "skiing",
"in", "the", "Niagara"”, "Falls"),
upos = c("DET"”, "NOUN", "ADP", "DET", "PROPN", "PROPN",
"PROPN", "PROPN", "VERB", "VERB",
"ADP", "DET", "PROPN", "PROPN"),
label = c("0", "0", "0", "0", "B-ORG", "I-ORG",
"B-PERSON", "I-PERSON", "O", "0",
"0", "0", "B-LOCATION", "I-LOCATION"), stringsAsFactors = FALSE)
x[, c("sequence_id", "group”)] <- txt_tagsequence(x$upos)
X

H#H#
Define entity groups following the IOB scheme
and combine B-LOC I-LOC I-LOC sequences as 1 group (e.g. New York City)
groups <- list(

Location = list(start = "B-LOC", labels = c("B-LOC", "I-LOC", "E-LOC")),
Organisation = 1list(start = "B-ORG", labels = c(”"B-ORG", "I-ORG", "E-ORG")),
Person = list(start = "B-PER", labels = c("B-PER", "I-PER", "E-PER")),

Misc = list(start = "B-MISC", labels = c("B-MISC", "I-MISC", "E-MISC")))

x[, c("entity_id", "entity"”)] <- txt_tagsequence(x$label, groups)

X
udpipe Tokenising, Lemmatising, Tagging and Dependency Parsing of raw
text in TIF format
Description

Tokenising, Lemmatising, Tagging and Dependency Parsing of raw text in TIF format

Usage

udpipe(x, object, parallel.cores = 1L, parallel.chunksize, ...)
Arguments

X either

* a character vector: The character vector contains the text you want to tok-
enize, lemmatise, tag and perform dependency parsing. The names of the
character vector indicate the document identifier.

¢ a data.frame with columns doc_id and text: The text column contains the
text you want to tokenize, lemmatise, tag and perform dependency parsing.
The doc_id column indicate the document identifier.

* alist of tokens: If you have already a tokenised list of tokens and you want
to enrich it by lemmatising, tagging and performing dependency parsing.
The names of the list indicate the document identifier.

74

object

parallel.cores

udpipe

All text data should be in UTF-8 encoding

either an object of class udpipe_model as returned by udpipe_load_model, the
path to the file on disk containing the udpipe model or the language as defined
by udpipe_download_model. If the language is provided, it will download the
model using udpipe_download_model.

integer indicating the number of parallel cores to use to speed up the annotation.
Defaults to 1 (use only 1 single thread).

If more than 1 is specified, it uses parallel::mclapply (unix) or parallel::clusterApply

(windows) to run annotation in parallel. In order to do this on Windows it runs
first parallel::makeCluster to set up a local socket cluster, on unix it just uses
forking to parallelise the annotation.

Only set this if you have more than 1 CPU at disposal and you have large amount
of data to annotate as setting up a parallel backend also takes some time plus an-
notations will run in chunks set by parallel.chunksize and for each parallel
chunk the udpipe model will be loaded which takes also some time.

If parallel.cores is bigger than 1 and object is of class udpipe_model, it
will load the corresponding file from the model again in each parallel chunk.

parallel.chunksize

Value

integer with the size of the chunks of text to be annotated in parallel. If not
provided, defaults to the size of x divided by parallel.cores. Only used in
case parallel.cores is bigger than 1.

other elements to pass on to udpipe_annotate and udpipe_download_model

a data.frame with one row per doc_id and term_id containing all the tokens in the data, the lemma,
the part of speech tags, the morphological features and the dependency relationship along the to-
kens. The data.frame has the following fields:

¢ doc_id: The document identifier.

e paragraph_id: The paragraph identifier which is unique within each document.

* sentence_id: The sentence identifier which is unique within each document.

* sentence: The text of the sentence of the sentence _id.

* start: Integer index indicating in the original text where the token starts. Missing in case of
tokens part of multi-word tokens which are not in the text.

* end: Integer index indicating in the original text where the token ends. Missing in case of
tokens part of multi-word tokens which are not in the text.

* term_id: A row identifier which is unique within the doc_id identifier.

* token_id: Token index, integer starting at 1 for each new sentence. May be a range for multi-
word tokens or a decimal number for empty nodes.

¢ token: The token.

¢ lemma: The lemma of the token.

* upos: The universal parts of speech tag of the token. See https://universaldependencies.
org/format.html

https://universaldependencies.org/format.html
https://universaldependencies.org/format.html

udpipe 75

* xpos: The treebank-specific parts of speech tag of the token. See https://universaldependencies.
org/format.html

» feats: The morphological features of the token, separated by |. See https://universaldependencies.
org/format.html

* head_token_id: Indicating what is the token_id of the head of the token, indicating to which
other token in the sentence it is related. See https://universaldependencies.org/format.
html

* dep_rel: The type of relation the token has with the head_token_id. See https://universaldependencies.
org/format.html

* deps: Enhanced dependency graph in the form of a list of head-deprel pairs. See https:
//universaldependencies.org/format.html

* misc: SpacesBefore/SpacesAfter/SpacesInToken spaces before/after/inside the token. Used to
reconstruct the original text. See https://ufal.mff.cuni.cz/udpipe/1/users-manual

The columns paragraph_id, sentence_id, term_id, start, end are integers, the other fields are charac-
ter data in UTF-8 encoding.

References

https://ufal.mff.cuni.cz/udpipe, https://lindat.mff.cuni.cz/repository/xmlui/handle/
11234/1-2364, https://universaldependencies.org/format.html

See Also

udpipe_load_model, as.data.frame.udpipe_connlu, udpipe_download_model, udpipe_annotate

Examples

model <- udpipe_download_model (language = "dutch-lassysmall")
if (!model$download_failed){
ud_dutch <- udpipe_load_model(model)

Tokenise, Tag and Dependency Parsing Annotation. Output is in CONLL-U format.
txt <- c(”Dus. Godvermehoeren met pus in alle puisten,
zei die schele van Van Bukburg en hij had nog gelijk ook.
Er was toen dat liedje van tietenkonttieten kont tieten kontkontkont,
maar dat hoefden we geenseens niet te zingen.
Je kunt zeggen wat je wil van al die gesluierde poezenpas maar d'r kwam wel
een vleeswarenwinkel onder te voorschijn van heb je me daar nou.

En zo gaat het maar door.",
"Wat die ransaap van een academici nou weer in z'n botte pan heb gehaald mag
Joost in m'n schoen gooien, maar feit staat boven water dat het een gore
vieze vuile ransaap is.")

names(txt) <- c("document_identifier_1", "we-like-ilya-leonard-pfeiffer")

##
TIF tagging: tag if x is a character vector, a data frame or a token sequence
#H#

https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://ufal.mff.cuni.cz/udpipe/1/users-manual
https://ufal.mff.cuni.cz/udpipe
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2364
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2364
https://universaldependencies.org/format.html

76 udpipe_accuracy

X <- udpipe(txt, object = ud_dutch)

x <- udpipe(data.frame(doc_id = names(txt), text = txt, stringsAsFactors
object = ud_dutch)

X <- udpipe(strsplit(txt, "[[:space:][:punct:][:digit:]1]+"),
object = ud_dutch)

FALSE),

You can also directly pass on the language in the call to udpipe

x <- udpipe("Dit werkt ook.", object = "dutch-lassysmall")

x <- udpipe(txt, object = "dutch-lassysmall"”)

x <- udpipe(data.frame(doc_id = names(txt), text = txt, stringsAsFactors = FALSE),
object = "dutch-lassysmall”)

x <- udpipe(strsplit(txt, "[[:space:][:punct:][:digit:]1]+"),
object = "dutch-lassysmall”)

cleanup for CRAN only - you probably want to keep your model if you have downloaded it
if(file.exists(model$file_model)) file.remove(model$file_model)

udpipe_accuracy Evaluate the accuracy of your UDPipe model on holdout data

Description

Get precision, recall and F1 measures on finding words / sentences / upos / xpos / features annotation
as well as UAS and LAS dependency scores on holdout data in conllu format.

Usage
udpipe_accuracy(
object,
file_conllu,
tokenizer = c("default”, "none"),
tagger = c("default”, "none"),
parser = c("default”, "none")
)
Arguments
object an object of class udpipe_model as returned by udpipe_load_model
file_conllu the full path to a file on disk containing holdout data in conllu format
tokenizer a character string of length 1, which is either *default’ or "none’
tagger a character string of length 1, which is either *default’ or 'none’
parser a character string of length 1, which is either ’default’ or 'none’
Value

a list with 3 elements

* accuracy: A character vector with accuracy metrics.

* error: A character string with possible errors when calculating the accuracy metrics

udpipe_annotate 77

References

https://ufal.mff.cuni.cz/udpipe, https://universaldependencies.org/format.html

See Also

udpipe_load_model

Examples

model <- udpipe_download_model(language = "dutch-lassysmall”)
if(!model$download_failed){
ud_dutch <- udpipe_load_model (model$file_model)

file_conllu <- system.file(package = "udpipe”, "dummydata", "traindata.conllu")
metrics <- udpipe_accuracy(ud_dutch, file_conllu)

metrics$accuracy
metrics <- udpipe_accuracy(ud_dutch, file_conllu,

tokenizer = "none”, tagger = "default”, parser = "default")
metrics$accuracy
metrics <- udpipe_accuracy(ud_dutch, file_conllu,

tokenizer = "none”, tagger = "none”, parser = "default")
metrics$accuracy
metrics <- udpipe_accuracy(ud_dutch, file_conllu,

tokenizer = "default”, tagger = "none"”, parser = "none")
metrics$accuracy
3

cleanup for CRAN only - you probably want to keep your model if you have downloaded it
if(file.exists(model$file_model)) file.remove(model$file_model)

udpipe_annotate Tokenising, Lemmatising, Tagging and Dependency Parsing Annota-
tion of raw text

Description

Tokenising, Lemmatising, Tagging and Dependency Parsing Annotation of raw text

Usage
udpipe_annotate(
object,
X}
doc_id = paste("doc”, seq_along(x), sep = ""),
tokenizer = "tokenizer”,
tagger = c("default”, "none"),
parser = c("default”, "none"),

trace = FALSE,

https://ufal.mff.cuni.cz/udpipe
https://universaldependencies.org/format.html

78 udpipe_annotate

Arguments

object an object of class udpipe_model as returned by udpipe_load_model

X a character vector in UTF-8 encoding where each element of the character vector
contains text which you like to tokenize, tag and perform dependency parsing.

doc_id an identifier of a document with the same length as x. This should be a character
vector. doc_id[i] corresponds to x[i].

tokenizer a character string of length 1, which is either "tokenizer’ (default udpipe tokeni-
sation) or a character string with more complex tokenisation options as speci-
fied in https://ufal.mff.cuni.cz/udpipe/1/users-manual in which case
tokenizer should be a character string where the options are put after each
other using the semicolon as separation.

tagger a character string of length 1, which is either ’default’ (default udpipe POS tag-
ging and lemmatisation) or 'none’ (no POS tagging and lemmatisation needed)
or a character string with more complex tagging options as specified in https:
//ufal.mff.cuni.cz/udpipe/1/users-manual in which case tagger should
be a character string where the options are put after each other using the semi-
colon as separation.

parser a character string of length 1, which is either ’default’ (default udpipe depen-
dency parsing) or ‘none’ (no dependency parsing needed) or a character string
with more complex parsing options as specified in https://ufal.mff.cuni.
cz/udpipe/1/users-manual in which case parser should be a character string
where the options are put after each other using the semicolon as separation.

trace A non-negative integer indicating to show progress on the annotation. If positive
it prints out a message before each trace number of elements of x for which
annotation is to be executed, allowing you to see how much of the text is already
annotated. Defaults to FALSE (no progress shown).

currently not used

Value
a list with 3 elements

¢ x: The x character vector with text.

 conllu: A character vector of length 1 containing the annotated result of the annotation flow
in CONLL-U format. This format is explained at https://universaldependencies.org/
format.html

* error: A vector with the same length of x containing possible errors when annotating x

References

https://ufal.mff.cuni.cz/udpipe, https://lindat.mff.cuni.cz/repository/xmlui/handle/
11234/1-2364, https://universaldependencies.org/format.html

https://ufal.mff.cuni.cz/udpipe/1/users-manual
https://ufal.mff.cuni.cz/udpipe/1/users-manual
https://ufal.mff.cuni.cz/udpipe/1/users-manual
https://ufal.mff.cuni.cz/udpipe/1/users-manual
https://ufal.mff.cuni.cz/udpipe/1/users-manual
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://ufal.mff.cuni.cz/udpipe
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2364
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2364
https://universaldependencies.org/format.html

udpipe_annotate 79

See Also

udpipe_load_model, as.data.frame.udpipe_connlu

Examples

model <- udpipe_download_model(language = "dutch-lassysmall")
if(!model$download_failed){
ud_dutch <- udpipe_load_model (model$file_model)

Tokenise, Tag and Dependency Parsing Annotation. Output is in CONLL-U format.
txt <- c(”Dus. Godvermehoeren met pus in alle puisten,
zei die schele van Van Bukburg en hij had nog gelijk ook.
Er was toen dat liedje van tietenkonttieten kont tieten kontkontkont,
maar dat hoefden we geenseens niet te zingen.
Je kunt zeggen wat je wil van al die gesluierde poezenpas maar d'r kwam wel
een vleeswarenwinkel onder te voorschijn van heb je me daar nou.

En zo gaat het maar door.",
"Wat die ransaap van een academici nou weer in z'n botte pan heb gehaald mag
Joost in m'n schoen gooien, maar feit staat boven water dat het een gore
vieze vuile ransaap is.")
X <- udpipe_annotate(ud_dutch, x
cat(x$conllu)
as.data.frame(x)

txt)

Only tokenisation
X <- udpipe_annotate(ud_dutch, x = txt, tagger = "none"”, parser = "none")
as.data.frame(x)

Only tokenisation and POS tagging + lemmatisation, no dependency parsing
x <- udpipe_annotate(ud_dutch, x = txt, tagger = "default”, parser = "none")
as.data.frame(x)

Only tokenisation and dependency parsing, no POS tagging nor lemmatisation
X <- udpipe_annotate(ud_dutch, x = txt, tagger = "none”, parser = "default")
as.data.frame(x)

Provide doc_id for joining and identification purpose

x <- udpipe_annotate(ud_dutch, x = txt, doc_id = c("id1", "feedbackabc"),
tagger = "none"”, parser = "none"”, trace = TRUE)

as.data.frame(x)

Mark on encodings: if your data is not in UTF-8 encoding, make sure you convert it to UTF-8
This can be done using iconv as follows for example

udpipe_annotate(ud_dutch, x = iconv('Ik drink melk bij mijn koffie.', to = "UTF-8"))

3

cleanup for CRAN only - you probably want to keep your model if you have downloaded it
if(file.exists(model$file_model)) file.remove(model$file_model)

80 udpipe_download_model

udpipe_annotation_params
List with training options set by the UDPipe community when building
models based on the Universal Dependencies data

Description

In order to show the settings which were used by the UDPipe community when building the models
made available when using udpipe_download_model, the tokenizer settings used for the different
treebanks are shown below, so that you can easily use this to retrain your model directly on the corre-
sponding UD treebank which you can download at http://universaldependencies.org/#ud-treebanks.

More information on how the models provided by the UDPipe community have been built are
available at https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2364
References

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2364

Examples

data(udpipe_annotation_params)
str(udpipe_annotation_params)

settings of the tokenizer
head(udpipe_annotation_params$tokenizer)

settings of the tagger
subset (udpipe_annotation_params$tagger, language_treebank == "nl")

settings of the parser
udpipe_annotation_params$parser

udpipe_download_model Download an UDPipe model provided by the UDPipe community for
a specific language of choice

Description

Ready-made models for 65 languages trained on 101 treebanks from https://universaldependencies.
org/ are provided to you. Some of these models were provided by the UDPipe community. Other
models were build using this R package. You can either download these models manually in order

to use it for annotation purposes or use udpipe_download_model to download these models for a
specific language of choice. You have the following options:

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2364
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2364
https://universaldependencies.org/
https://universaldependencies.org/

udpipe_download_model 81

Usage

udpipe_download_model (
language = c("afrikaans-afribooms”, "ancient_greek-perseus”, "ancient_greek-proiel”,
"arabic-padt”, "armenian-armtdp”, "basque-bdt"”, "belarusian-hse"”, "bulgarian-btb”,
"pburyat-bdt"”, "catalan-ancora”, "chinese-gsd"”, "chinese-gsdsimp”,
"classical_chinese-kyoto"”, "coptic-scriptorium”, "croatian-set”, "czech-cac”,
"czech-cltt"”, "czech-fictree", "czech-pdt”, "danish-ddt”, "dutch-alpino”,
"dutch-lassysmall”, "english-ewt"”, "english-gum”, "english-lines"”, "english-partut”,

"estonian-edt”, "estonian-ewt”, "finnish-ftb",
"finnish-tdt"”, "french-gsd”,
"french-partut”, "french-sequoia”, "french-spoken”, "galician-ctg”,

"galician-treegal”, "german-gsd”, "german-hdt"”, "gothic-proiel”, "greek-gdt”,
"hebrew-htb"”, "hindi-hdtb", "hungarian-szeged"”, "indonesian-gsd"”, "irish-idt",
"italian-isdt”, "italian-partut”, "italian-postwita”, "italian-twittiro”,
"italian-vit"”, "japanese-gsd", "kazakh-ktb"”, "korean-gsd", "korean-kaist",
"kurmanji-mg", "latin-ittb", "latin-perseus"”, "latin-proiel”, "latvian-1lvtb”,

"lithuanian-alksnis”,

"lithuanian-hse"”, "maltese-mudt”, "marathi-ufal”,
"north_sami-giella”, "norwegian-bokmaal”, "norwegian-nynorsk”,
"norwegian-nynorsklia”, "old_church_slavonic-proiel”, "old_french-srcmf",

"old_russian-torot”, "persian-seraji”, "polish-1fg"”, "polish-pdb"”, "polish-sz",
"portuguese-bosque”, "portuguese-br"”, "portuguese-gsd”, "romanian-nonstandard”,

"romanian-rrt"”, "russian-gsd”, "russian-syntagrus”, "russian-taiga"”, "sanskrit-ufal”,
"scottish_gaelic-arcosg"”, "serbian-set”, "slovak-snk", "slovenian-ssj",
"slovenian-sst"”, "spanish-ancora”, "spanish-gsd”, "swedish-lines",

"swedish-talbanken”, "tamil-ttb"”, "telugu-mtg"”, "turkish-imst"”, "ukrainian-iu",

"upper_sorbian-ufal”, "urdu-udtb”, "uyghur-udt”, "vietnamese-vtb"”, "wolof-wtbh"),

model_dir = getwd(),

udpipe_model_repo = c("jwijffels/udpipe.models.ud.2.5",
"jwijffels/udpipe.models.ud.2.4", "jwijffels/udpipe.models.ud.2.3",

"jwijffels/udpipe.models.ud.2.0", "jwijffels/udpipe.models.conll18.baseline”,
"bnosac/udpipe.models.ud"),

overwrite = TRUE,

Arguments

language a character string with a Universal Dependencies treebank which was used to
build the model. Possible values are:
afrikaans-afribooms, ancient_greek-perseus, ancient_greek-proiel, arabic-padt,
armenian-armtdp, basque-bdt, belarusian-hse, bulgarian-btb, buryat-bdt, catalan-
ancora, chinese-gsd, chinese-gsdsimp, coptic-scriptorium, croatian-set, czech-
cac, czech-cltt, czech-fictree, czech-pdt, danish-ddt, dutch-alpino, dutch-lassysmall,
english-ewt, english-gum, english-lines, english-partut, estonian-edt, finnish-
ftb, finnish-tdt, french-gsd, french-partut, french-sequoia, french-spoken, galician-
ctg, galician-treegal, german-gsd, german-hdt, gothic-proiel, greek-gdt, hebrew-

82

model_dir

udpipe_download_model

htb, hindi-hdtb, hungarian-szeged, indonesian-gsd, irish-idt, italian-isdt, italian-
partut, italian-postwita, italian-twittiro, japanese-gsd, kazakh-ktb, korean-gsd,
korean-kaist, kurmanji-mg, latin-ittb, latin-perseus, latin-proiel, latvian-1vtb, lithuanian-
hse, maltese-mudt, marathi-ufal, north_sami-giella, norwegian-bokmaal, norwegian-
nynorsk, norwegian-nynorsklia, old_church_slavonic-proiel, old_french-srcmf,
persian-seraji, polish-1fg, polish-sz, portuguese-bosque, portuguese-br, portuguese-
gsd, romanian-nonstandard, romanian-rrt, russian-gsd, russian-syntagrus, russian-
taiga, sanskrit-ufal, scottish_gaelic-arcosg, serbian-set, slovak-snk, slovenian-

ssj, slovenian-sst, spanish-ancora, spanish-gsd, swedish-lines, swedish-talbanken,
tamil-ttb, telugu-mtg, turkish-imst, ukrainian-iu, upper_sorbian-ufal, urdu-udtb,
uyghur-udt, vietnamese-vtb

Each language should have a treebank extension (e.g. english-ewt, russian-
syntagrus, dutch-alpino, ...). If you do not provide a treebank extension (e.g.
only english, russian, dutch), the function will use the default treebank of that
language as was used in Universal Dependencies up to version 2.1.

a path where the model will be downloaded to. Defaults to the current working
directory

udpipe_model_repo

overwrite

location where the models will be downloaded from. Either ’jwijffels/udpipe.models.ud.2.5’,
“jwijffels/udpipe.models.ud.2.4’, ’jwijffels/udpipe.models.ud.2.3’, ’jwijffels/udpipe.models.ud.2.0’,
"jwijffels/udpipe.models.conll18.baseline’ or ’bnosac/udpipe.models.ud’.

Defaults to "jwijffels/udpipe.models.ud.2.5’.

* ’bnosac/udpipe.models.ud’ contains models mainly released under the CC-
BY-SA license constructed on Universal Dependencies 2.1 data, and some
models released under the GPL-3 and LGPL-LR license

* ’jwijffels/udpipe.models.ud.2.5’ contains models released under the CC-
BY-NC-SA license constructed on Universal Dependencies 2.5 data

* ’jwijffels/udpipe.models.ud.2.4’ contains models released under the CC-
BY-NC-SA license constructed on Universal Dependencies 2.4 data

* ’jwijffels/udpipe.models.ud.2.3’ contains models released under the CC-
BY-NC-SA license constructed on Universal Dependencies 2.3 data

* ’jwijffels/udpipe.models.ud.2.0’ contains models released under the CC-
BY-NC-SA license constructed on Universal Dependencies 2.0 data

* ’jwijffels/udpipe.models.conll18.baseline’ contains models released under
the CC-BY-NC-SA license constructed on Universal Dependencies 2.2 data
for the 2018 conll shared task

See the Details section for further information on which languages are available
in each of these repositories.

logical indicating to overwrite the file if the file was already downloaded. De-
faults to TRUE indicating it will download the model and overwrite the file if the
file already existed. If set to FALSE, the model will only be downloaded if it does
not exist on disk yet in the model_dir folder.

currently not used

udpipe_download_model 83

Details

The function allows you to download the following language models based on your setting of argu-
ment udpipe_model_repo:

* ’jwijffels/udpipe.models.ud.2.5’: https://github.com/jwijffels/udpipe.models.ud.?2.
5

— UDPipe models constructed on data from Universal Dependencies 2.5

— languages-treebanks: afrikaans-afribooms, ancient_greek-perseus, ancient_greek-proiel,
arabic-padt, armenian-armtdp, basque-bdt, belarusian-hse, bulgarian-btb, catalan-ancora,
chinese-gsd, chinese-gsdsimp, classical_chinese-kyoto, coptic-scriptorium, croatian-set,
czech-cac, czech-cltt, czech-fictree, czech-pdt, danish-ddt, dutch-alpino, dutch-lassysmall,
english-ewt, english-gum, english-lines, english-partut, estonian-edt, estonian-ewt, finnish-
ftb, finnish-tdt, french-gsd, french-partut, french-sequoia, french-spoken, galician-ctg,
galician-treegal, german-gsd, german-hdt, gothic-proiel, greek-gdt, hebrew-htb, hindi-
hdtb, hungarian-szeged, indonesian-gsd, irish-idt, italian-isdt, italian-partut, italian-postwita,
italian-twittiro, italian-vit, japanese-gsd, korean-gsd, korean-kaist, latin-ittb, latin-perseus,
latin-proiel, latvian-lvtb, lithuanian-alksnis, lithuanian-hse, maltese-mudt, marathi-ufal,
north_sami-giella, norwegian-bokmaal, norwegian-nynorsk, norwegian-nynorsklia, old_church_slavonic-
proiel, old_french-srcmf, old_russian-torot, persian-seraji, polish-1fg, polish-pdb, portuguese-
bosque, portuguese-gsd, romanian-nonstandard, romanian-rrt, russian-gsd, russian-syntagrus,
russian-taiga, scottish_gaelic-arcosg, serbian-set, slovak-snk, slovenian-ssj, slovenian-
sst, spanish-ancora, spanish-gsd, swedish-lines, swedish-talbanken, tamil-ttb, telugu-mtg,
turkish-imst, ukrainian-iu, urdu-udtb, uyghur-udt, vietnamese-vtb, wolof-wtb

— license: CC-BY-SA-NC

* ’jwijffels/udpipe.models.ud.2.4’: https://github.com/jwijffels/udpipe.models.ud.?2.
4

— UDPipe models constructed on data from Universal Dependencies 2.4

— languages-treebanks: afrikaans-afribooms, ancient_greek-perseus, ancient_greek-proiel,
arabic-padt, armenian-armtdp, basque-bdt, belarusian-hse, bulgarian-btb, catalan-ancora,
chinese-gsd, classical_chinese-kyoto, coptic-scriptorium, croatian-set, czech-cac, czech-
cltt, czech-fictree, czech-pdt, danish-ddt, dutch-alpino, dutch-lassysmall, english-ewt,
english-gum, english-lines, english-partut, estonian-edt, estonian-ewt, finnish-ftb, finnish-
tdt, french-gsd, french-partut, french-sequoia, french-spoken, galician-ctg, galician-treegal,
german-gsd, gothic-proiel, greek-gdt, hebrew-htb, hindi-hdtb, hungarian-szeged, indonesian-
gsd, irish-idt, italian-isdt, italian-partut, italian-postwita, italian-vit, japanese-gsd, korean-
gsd, korean-kaist, latin-ittb, latin-perseus, latin-proiel, latvian-lvtb, lithuanian-alksnis,
lithuanian-hse, maltese-mudt, marathi-ufal, north_sami-giella, norwegian-bokmaal, norwegian-
nynorsk, norwegian-nynorsklia, old_church_slavonic-proiel, old_french-srcmf, old_russian-
torot, persian-seraji, polish-1fg, polish-pdb, portuguese-bosque, portuguese-gsd, romanian-
nonstandard, romanian-rrt, russian-gsd, russian-syntagrus, russian-taiga, serbian-set, slovak-
snk, slovenian-ssj, slovenian-sst, spanish-ancora, spanish-gsd, swedish-lines, swedish-
talbanken, tamil-ttb, telugu-mtg, turkish-imst, ukrainian-iu, urdu-udtb, uyghur-udt, vietnamese-
vtb, wolof-wtb

— license: CC-BY-SA-NC

* ’jwijffels/udpipe.models.ud.2.3’: https://github.com/jwijffels/udpipe.models.ud.?2.
3

https://github.com/jwijffels/udpipe.models.ud.2.5
https://github.com/jwijffels/udpipe.models.ud.2.5
https://github.com/jwijffels/udpipe.models.ud.2.4
https://github.com/jwijffels/udpipe.models.ud.2.4
https://github.com/jwijffels/udpipe.models.ud.2.3
https://github.com/jwijffels/udpipe.models.ud.2.3

84

udpipe_download_model

— UDPipe models constructed on data from Universal Dependencies 2.3

— languages-treebanks: afrikaans-afribooms, ancient_greek-perseus, ancient_greek-proiel,
arabic-padt, armenian-armtdp, basque-bdt, belarusian-hse, bulgarian-btb, catalan-ancora,
chinese-gsd, coptic-scriptorium, croatian-set, czech-cac, czech-cltt, czech-fictree, czech-
pdt, danish-ddt, dutch-alpino, dutch-lassysmall, english-ewt, english-gum, english-lines,
english-partut, estonian-edt, finnish-ftb, finnish-tdt, french-gsd, french-partut, french-
sequoia, french-spoken, galician-ctg, galician-treegal, german-gsd, gothic-proiel, greek-
gdt, hebrew-htb, hindi-hdtb, hungarian-szeged, indonesian-gsd, irish-idt, italian-isdt, italian-
partut, italian-postwita, japanese-gsd, korean-gsd, korean-kaist, latin-ittb, latin-perseus,
latin-proiel, latvian-lvtb, lithuanian-hse, maltese-mudt, marathi-ufal, north_sami-giella,
norwegian-bokmaal, norwegian-nynorsk, norwegian-nynorsklia, old_church_slavonic-proiel,
old_french-sremf, persian-seraji, polish-Ifg, polish-sz, portuguese-bosque, portuguese-
gsd, romanian-nonstandard, romanian-rrt, russian-gsd, russian-syntagrus, russian-taiga,
serbian-set, slovak-snk, slovenian-ssj, slovenian-sst, spanish-ancora, spanish-gsd, swedish-
lines, swedish-talbanken, tamil-ttb, telugu-mtg, turkish-imst, ukrainian-iu, urdu-udtb,
uyghur-udt, vietnamese-vtb

— license: CC-BY-SA-NC

* ’jwijffels/udpipe.models.ud.2.0’: https://github.com/jwijffels/udpipe.models.ud.?2.
0

— UDPipe models constructed on data from Universal Dependencies 2.0

— languages-treebanks: ancient_greek-proiel, ancient_greek, arabic, basque, belarusian,
bulgarian, catalan, chinese, coptic, croatian, czech-cac, czech-cltt, czech, danish, dutch-
lassysmall, dutch, english-lines, english-partut, english, estonian, finnish-ftb, finnish,
french-partut, french-sequoia, french, galician-treegal, galician, german, gothic, greek,
hebrew, hindi, hungarian, indonesian, irish, italian, japanese, kazakh, korean, latin-ittb,

latin-proiel, latin, latvian, lithuanian, norwegian-bokmaal, norwegian-nynorsk, old_church_slavonic,

persian, polish, portuguese-br, portuguese, romanian, russian-syntagrus, russian, sanskrit,
slovak, slovenian-sst, slovenian, spanish-ancora, spanish, swedish-lines, swedish, tamil,
turkish, ukrainian, urdu, uyghur, vietnamese
— license: CC-BY-SA-NC
* ’jwijffels/udpipe.models.conll18.baseline’: https://github.com/jwijffels/udpipe.models.
conll18.baseline

— UDPipe models constructed on data from Universal Dependencies 2.2

— languages-treebanks: afrikaans-afribooms, ancient_greek-perseus, ancient_greek-proiel,
arabic-padt, armenian-armtdp, basque-bdt, bulgarian-btb, buryat-bdt, catalan-ancora, chinese-
gsd, croatian-set, czech-cac, czech-fictree, czech-pdt, danish-ddt, dutch-alpino, dutch-
lassysmall, english-ewt, english-gum, english-lines, estonian-edt, finnish-ftb, finnish-tdt,
french-gsd, french-sequoia, french-spoken, galician-ctg, galician-treegal, german-gsd,
gothic-proiel, greek-gdt, hebrew-htb, hindi-hdtb, hungarian-szeged, indonesian-gsd, irish-
idt, italian-isdt, italian-postwita, japanese-gsd, kazakh-ktb, korean-gsd, korean-kaist, kurmanji-
mg, latin-ittb, latin-perseus, latin-proiel, latvian-lvtb, mixed, north_sami-giella, norwegian-
bokmaal, norwegian-nynorsk, norwegian-nynorsklia, old_church_slavonic-proiel, old_french-
sremf, persian-seraji, polish-1fg, polish-sz, portuguese-bosque, romanian-rrt, russian-syntagrus,
russian-taiga, serbian-set, slovak-snk, slovenian-ssj, slovenian-sst, spanish-ancora, swedish-
lines, swedish-talbanken, turkish-imst, ukrainian-iu, upper_sorbian-ufal, urdu-udtb, uyghur-
udt, vietnamese-vtb

— license: CC-BY-SA-NC

https://github.com/jwijffels/udpipe.models.ud.2.0
https://github.com/jwijffels/udpipe.models.ud.2.0
https://github.com/jwijffels/udpipe.models.conll18.baseline
https://github.com/jwijffels/udpipe.models.conll18.baseline

udpipe_download_model 85

* ’bnosac/udpipe.models.ud’: https://github.com/bnosac/udpipe.models.ud

— UDPipe models constructed on data from Universal Dependencies 2.1

— This repository contains models build with this R package on open data from Universal
Dependencies 2.1 which allows for commercial usage. The license of these models is
mostly CC-BY-SA. Visit that github repository for details on the licenses of the language
of your choice. And contact www.bnosac.be if you need support on these models or
require models tuned to your needs.

— languages-treebanks: afrikaans, croatian, czech-cac, dutch, english, finnish, french-sequoia,
irish, norwegian-bokmaal, persian, polish, portuguese, romanian, serbian, slovak, spanish-
ancora, swedish

— license: license is treebank-specific but mainly CC-BY-SA and GPL-3 and LGPL-LR

* If you need to train models yourself for commercial purposes or if you want to improve mod-
els, you can easily do this with udpipe_train which is explained in detail in the package
vignette.

Note that when you download these models, you comply to the license of your specific language
model.

Value
A data.frame with 1 row and the following columns:

* language: The language as provided by the input parameter language
* file_model: The path to the file on disk where the model was downloaded to
e url: The URL where the model was downloaded from

» download_failed: A logical indicating if the download has failed or not due to internet con-
nectivity issues

* download_message: A character string with the error message in case the downloading of the
model failed

References

https://ufal.mff.cuni.cz/udpipe, https://github.com/jwijffels/udpipe.models.ud.2.
5,https://github.com/jwijffels/udpipe.models.ud.2.4, https://github.com/jwijffels/
udpipe.models.ud.2.3, https://github.com/jwijffels/udpipe.models.conll18.baseline
https://github.com/jwijffels/udpipe.models.ud.2.0, https://github.com/bnosac/udpipe.
models.ud

See Also

udpipe_load_model

Examples

Not run:

x <- udpipe_download_model (language = "dutch-alpino”)

x <- udpipe_download_model (language = "dutch-lassysmall")
x <- udpipe_download_model(language = "russian”)

https://github.com/bnosac/udpipe.models.ud
https://ufal.mff.cuni.cz/udpipe
https://github.com/jwijffels/udpipe.models.ud.2.5
https://github.com/jwijffels/udpipe.models.ud.2.5
https://github.com/jwijffels/udpipe.models.ud.2.4
https://github.com/jwijffels/udpipe.models.ud.2.3
https://github.com/jwijffels/udpipe.models.ud.2.3
https://github.com/jwijffels/udpipe.models.conll18.baseline
https://github.com/jwijffels/udpipe.models.ud.2.0
https://github.com/bnosac/udpipe.models.ud
https://github.com/bnosac/udpipe.models.ud

86 udpipe_load_model

<- udpipe_download_model (language = "french")

<- udpipe_download_model (language = "english-partut")

<- udpipe_download_model(language = "english-ewt")

<- udpipe_download_model (language = "german-gsd")

<- udpipe_download_model (language = "spanish-gsd")

<- udpipe_download_model(language = "spanish-gsd”, overwrite = FALSE)

X X X X X X

X <- udpipe_download_model(language = "dutch-alpino”,
udpipe_model_repo = "jwijffels/udpipe.models.ud.2.5")

x <- udpipe_download_model (language = "dutch-alpino”,
udpipe_model_repo = "jwijffels/udpipe.models.ud.2.4")
x <- udpipe_download_model (language = "dutch-alpino”,

udpipe_model_repo = "jwijffels/udpipe.models.ud.2.3")
X <- udpipe_download_model(language = "dutch-alpino”,
udpipe_model_repo = "jwijffels/udpipe.models.ud.2.0")

x <- udpipe_download_model(language = "english"”, udpipe_model_repo = "bnosac/udpipe.models.ud")
x <- udpipe_download_model(language = "dutch”, udpipe_model_repo = "bnosac/udpipe.models.ud")
x <- udpipe_download_model(language = "afrikaans”, udpipe_model_repo = "bnosac/udpipe.models.ud")
x <- udpipe_download_model (language = "spanish-ancora”,
udpipe_model_repo = "bnosac/udpipe.models.ud")
X <- udpipe_download_model (language = "dutch-ud-2.1-20180111.udpipe”,
udpipe_model_repo = "bnosac/udpipe.models.ud")
X <- udpipe_download_model(language = "english",

udpipe_model_repo = "jwijffels/udpipe.models.conll18.baseline”)
End(Not run)

x <- udpipe_download_model(language = "sanskrit”,
udpipe_model_repo = "jwijffels/udpipe.models.ud.2.0",
model_dir = tempdir())

X

cleanup for CRAN

if(file.exists(x$file_model)) file.remove(x$file_model)

udpipe_load_model Load an UDPipe model

Description

Load an UDPipe model so that it can be use in udpipe_annotate

Usage

udpipe_load_model(file)

Arguments

file full path to the model or the value returned by a call to udpipe_download_model

udpipe_read_conllu 87

Value
An object of class udpipe_model which is a list with 2 elements

« file: The path to the model as provided by file

* model: An Rcpp-generated pointer to the loaded model which can be used in udpipe_annotate

References

https://ufal.mff.cuni.cz/udpipe

See Also

udpipe_annotate, udpipe_download_model, udpipe_train

Examples

Not run:

x <- udpipe_download_model(language = "dutch-lassysmall")
x$file_model

ud_english <- udpipe_load_model(x$file_model)

X <- udpipe_download_model(language = "english")
x$file_model
ud_english <- udpipe_load_model(x$file_model)

x <- udpipe_download_model (language = "hebrew")
x$file_model
ud_hebrew <- udpipe_load_model(x$file_model)

End(Not run)

X <- udpipe_download_model(language = "dutch-lassysmall”, model_dir = tempdir())
x$file_model
if(!x$download_failed){
ud_dutch <- udpipe_load_model (x$file_model)
3

cleanup for CRAN
if(file.exists(x$file_model)) file.remove(x$file_model)

udpipe_read_conllu Read in a CONLL-U file as a data.frame

Description

Read in a CONLL-U file as a data.frame

https://ufal.mff.cuni.cz/udpipe

88 udpipe_train

Usage

udpipe_read_conllu(file)

Arguments

file a connection object or a character string with the location of the file

Value
a data.frame with columns doc_id, paragraph_id, sentence_id, sentence, token_id, token, lemma,
upos, xpos, feats, head_token_id, deprel, dep_rel, misc

Examples

file_conllu <- system.file(package = "udpipe”, "dummydata", "traindata.conllu")
X <- udpipe_read_conllu(file_conllu)
head(x)

udpipe_train Train a UDPipe model

Description

Train a UDPipe model which allows to do Tokenization, Parts of Speech Tagging, Lemmatization
and Dependency Parsing or a combination of those.

This function allows you to build models based on data in in CONLL-U format as described
at https://universaldependencies.org/format.html. At the time of writing open data in
CONLL-U format for more than 50 languages are available at https://universaldependencies.
org. Most of these are distributed under the CC-BY-SA licence or the CC-BY-NC-SA license.

This function allows to build annotation tagger models based on these data in CONLL-U format,
allowing you to have your own tagger model. This is relevant if you want to tune the tagger to your
needs or if you don’t want to use ready-made models provided under the CC-BY-NC-SA license as
shown at udpipe_load_model

Usage

udpipe_train(
file = file.path(getwd(), "my_annotator.udpipe"),
files_conllu_training,
files_conllu_holdout = character(),

annotation_tokenizer = "default”,
annotation_tagger = "default”,
annotation_parser = "default”

https://universaldependencies.org/format.html
https://universaldependencies.org
https://universaldependencies.org

udpipe_train 89

Arguments

file full path where the model will be saved. The model will be stored as a binary
file which udpipe_load_model can handle. Defaults to *my_annotator.udpipe’
in the current working directory.

files_conllu_training
a character vector of files in CONLL-U format used for training the model

files_conllu_holdout
a character vector of files in CONLL-U format used for holdout evalution of the
model. This argument is optional.

annotation_tokenizer
a string containing options for the tokenizer. This can be either 'none’ or ’de-
fault’ or a list of options as mentioned in the UDPipe manual. See the vignette
vignette("udpipe-train”, package = "udpipe"”) or go directly to https:
//ufal.mff.cuni.cz/udpipe/1/users-manual#model_training_tokenizer
for a full description of the options or see the examples below. Defaults to "de-
fault’. If you specify 'none’, the model will not be able to perform tokenization.

annotation_tagger
a string containing options for the pos tagger and lemmatiser. This can be either
none’ or “default’ or a list of options as mentioned in the UDPipe manual. See
the vignette vignette("udpipe-train”, package = "udpipe”) or go directly
tohttps://ufal.mff.cuni.cz/udpipe/1/users-manual#model_training_
tagger for a full description of the options or see the examples below. Defaults
to ’default’. If you specify 'none’, the model will not be able to perform POS
tagging or lemmatization.

annotation_parser
a string containing options for the dependency parser. This can be either 'none’
or ’default’ or a list of options as mentioned in the UDPipe manual. See the
vignette vignette("udpipe-train”, package = "udpipe”) or go directly to
https://ufal.mff.cuni.cz/udpipe/1/users-manual#model_training_parser
for a full description of the options or see the examples below. Defaults to ’de-
fault’. If you specify 'none’, the model will not be able to perform dependency
parsing.

Details

In order to train a model, you need to provide files which are in CONLL-U format in argument
files_conllu_training. This can be a vector of files or just one file. If you do not have your own
CONLL-U files, you can download files for your language of choice athttps://universaldependencies.
org.

At the time of writing open data in CONLL-U format for 50 languages are available at https:
//universaldependencies.org, namely for: ancient_greek, arabic, basque, belarusian, bulgar-
ian, catalan, chinese, coptic, croatian, czech, danish, dutch, english, estonian, finnish, french, gali-
cian, german, gothic, greek, hebrew, hindi, hungarian, indonesian, irish, italian, japanese, kazakh,
korean, latin, latvian, lithuanian, norwegian, old_church_slavonic, persian, polish, portuguese,
romanian, russian, sanskrit, slovak, slovenian, spanish, swedish, tamil, turkish, ukrainian, urdu,
uyghur, vietnamese.

https://ufal.mff.cuni.cz/udpipe/1/users-manual#model_training_tokenizer
https://ufal.mff.cuni.cz/udpipe/1/users-manual#model_training_tokenizer
https://ufal.mff.cuni.cz/udpipe/1/users-manual#model_training_tagger
https://ufal.mff.cuni.cz/udpipe/1/users-manual#model_training_tagger
https://ufal.mff.cuni.cz/udpipe/1/users-manual#model_training_parser
https://universaldependencies.org
https://universaldependencies.org
https://universaldependencies.org
https://universaldependencies.org

90 udpipe_train

Value

A list with elements

* file: The path to the model, which can be used in udpipe_load_model
* annotation_tokenizer: The input argument annotation_tokenizer
 annotation_tagger: The input argument annotation_tagger

* annotation_parser: The input argument annotation_parser

* errors: Messages from the UDPipe process indicating possible errors for example when pass-
ing the wrong arguments to the annotation_tokenizer, annotation_tagger or annotation_parser

References

https://ufal.mff.cuni.cz/udpipe/1/users-manual

See Also

udpipe_annotation_params, udpipe_annotate, udpipe_load_model, udpipe_accuracy

Examples

You need to have a file on disk in CONLL-U format, taking the toy example file put in the package
file_conllu <- system.file(package = "udpipe”, "dummydata", "traindata.conllu")

file_conllu

cat(head(readLines(file_conllu), 3), sep="\n")

Not run:
##
This is a toy example showing how to build a model, it is not a good model whatsoever,
because model building takes more than 5 seconds this model is saved also in
the file at system.file(package = "udpipe”, "dummydata”, "toymodel.udpipe")
##
m <- udpipe_train(file = "toymodel.udpipe”, files_conllu_training = file_conllu,
annotation_tokenizer = list(dimension = 16, epochs = 1, batch_size = 100, dropout = 0.7),
annotation_tagger = list(iterations = 1, models = 1,
provide_xpostag = 1, provide_lemma = @, provide_feats = 0,
guesser_suffix_rules = 2, guesser_prefix_min_count = 2),

annotation_parser = list(iterations = 2,

embedding_upostag = 20, embedding_feats = 20, embedding_xpostag = @, embedding_form = 50,

embedding_lemma = @, embedding_deprel = 20, learning_rate = 0.01,
learning_rate_final = 0.001, 12 = 0.5, hidden_layer = 200,
batch_size = 10, transition_system = "projective”, transition_oracle = "dynamic",
structured_interval = 10))

End(Not run)

file_model <- system.file(package = "udpipe”, "dummydata”, "toymodel.udpipe"”)

ud_toymodel <- udpipe_load_model(file_model)

x <- udpipe_annotate(object = ud_toymodel, x = "Ik ging deze morgen naar de bakker brood halen.")
X <- as.data.frame(x)

https://ufal.mff.cuni.cz/udpipe/1/users-manual

unique_identifier 91

##

The above was a toy example showing how to build a model, if you want real-life scenario's
look at the training parameter examples given below and train it on your CONLL-U file
##

Example training arguments used for the models available at udpipe_download_model
data(udpipe_annotation_params)

head(udpipe_annotation_params$tokenizer)

head(udpipe_annotation_params$tagger)

head(udpipe_annotation_params$parser)

Not run:

More details in the package vignette:

vignette("udpipe-train”, package = "udpipe”)

End(Not run)

unique_identifier Create a unique identifier for each combination of fields in a data
frame

Description

Create a unique identifier for each combination of fields in a data frame. This unique identifier is
unique for each combination of the elements of the fields. The generated identifier is like a primary
key or a secondary key on a table. This is just a small wrapper around frank

Usage

unique_identifier(x, fields, start_from = 1L)

Arguments

X a data.frame

fields a character vector of columns from x

start_from integer number indicating to start from that number onwards
Value

an integer vector of the same length as the number of rows in x containing the unique identifier

Examples

data(brussels_reviews_anno)

X <- brussels_reviews_anno

x$doc_sent_id <- unique_identifier(x, fields = c("doc_id", "sentence_id"))

head(x, 15)

range(x$doc_sent_id)

x$doc_sent_id <- unique_identifier(x, fields = c("doc_id", "sentence_id"), start_from = 10)
head(x, 15)

range(x$doc_sent_id)

92 unlist_tokens

unlist_tokens Create a data.frame from a list of tokens

Description

Create a data.frame from a list of tokens.

Usage

unlist_tokens(x)

Arguments

X a list where the list elements are character vectors of tokens

Value

the data of x converted to a data.frame. This data.frame has columns doc_id and token where the
doc_id is taken from the list names of x and token contains the data of x

Examples
x <- setNames(c("some text here”, "hi there understand this?"), c("a", "b"))
x <- strsplit(x, split =" ")

X
unlist_tokens(x)

Index

&,logical,syntaxrelation-method
(syntaxrelation-class), 53

&,syntaxrelation,logical-method
(syntaxrelation-class), 53

all, 58, 59

any, 58
as.data.frame.udpipe_connlu, 3, 75, 79
as.matrix.cooccurrence, 5
as_conllu, 6

as_cooccurrence, 7

as_fasttext, 8

as_phrasemachine, 9, 46
as_word2vec, 10

brussels_listings, 11,11, 12
brussels_reviews, /7,11, 12
brussels_reviews_anno, /7,12, 13

brussels_reviews_w2v_embeddings_lemma_nl
13

cbind, 27

cbind_dependencies, 13
cbind_morphological, 15
chisq.test, 29

collocation (keywords_collocation), 43
cooccurrence, 5, 16

document_term_frequencies, 19, 22-24

document_term_frequencies_statistics
21

document_term_matrix, 22, 26-30, 32,
34-40, 42

dtm_align, 25

dtm_bind, 27

dtm_cbind (dtm_bind), 27

dtm_chisq, 29

dtm_colsums, 30

dtm_conform, 32

dtm_cor, 33

93

dtm_rbind (dtm_bind), 27
dtm_remove_lowfreq, 34
dtm_remove_sparseterms, 35
dtm_remove_terms, 36
dtm_remove_tfidf, 37
dtm_reverse, 38

dtm_rowsums (dtm_colsums), 30
dtm_sample, 39
dtm_svd_similarity, 40
dtm_tfidf, 42

frank, 91

gregexpr, 57
grepl, 55, 58, 59

keywords_collocation, 43
keywords_phrases, 45
keywords_rake, 47

match, 66

paste, 49, 54, 56, 61, 63, 65
paste.data.frame, 49, 52, 53

phrases, 10

phrases (keywords_phrases), 45
predict.LDA (predict.LDA_VEM), 50
predict.LDA_Gibbs (predict.LDA_VEM), 50
predict.LDA_VEM, 50

rbind, 27

sample.int, 68

shift, 56, 61, 64, 65

sparseMatrix, 24

strsplit, 53

strsplit.data.frame, 49, 52

sum, 58

syntaxpatterns (syntaxpatterns-class),
53

syntaxpatterns-class, 53

94

syntaxrelation (syntaxrelation-class),

53
syntaxrelation-class, 53

txt_collapse, 54
txt_contains, 55
txt_context, 56
txt_count, 57
txt_freq, 58
txt_grepl, 58
txt_highlight, 60
txt_next, 56, 60
txt_nextgram, 61, 67
txt_overlap, 62
txt_paste, 56, 63
txt_previous, 56, 64
txt_previousgram, 64
txt_recode, 65
txt_recode_ngram, 66
txt_sample, 68, 71
txt_sentiment, 68
txt_show, 71
txt_tagsequence, 72

udpipe, 4, 69, 73
udpipe_accuracy, 76, 90

udpipe_annotate, 3, 4, 9, 15, 56, 61, 64, 74,

75,71, 86, 87, 90

udpipe_annotation_params, 80, 90
udpipe_download_model, 74, 75, 80, 80, 86,

87

udpipe_load_model, 74-79, 85, 86, 88—90

udpipe_read_conllu, 87
udpipe_train, 85, 87, 88
unique_identifier, 91
unlist_tokens, 92

INDEX

	as.data.frame.udpipe_connlu
	as.matrix.cooccurrence
	as_conllu
	as_cooccurrence
	as_fasttext
	as_phrasemachine
	as_word2vec
	brussels_listings
	brussels_reviews
	brussels_reviews_anno
	brussels_reviews_w2v_embeddings_lemma_nl
	cbind_dependencies
	cbind_morphological
	cooccurrence
	document_term_frequencies
	document_term_frequencies_statistics
	document_term_matrix
	dtm_align
	dtm_bind
	dtm_chisq
	dtm_colsums
	dtm_conform
	dtm_cor
	dtm_remove_lowfreq
	dtm_remove_sparseterms
	dtm_remove_terms
	dtm_remove_tfidf
	dtm_reverse
	dtm_sample
	dtm_svd_similarity
	dtm_tfidf
	keywords_collocation
	keywords_phrases
	keywords_rake
	paste.data.frame
	predict.LDA_VEM
	strsplit.data.frame
	syntaxpatterns-class
	syntaxrelation-class
	txt_collapse
	txt_contains
	txt_context
	txt_count
	txt_freq
	txt_grepl
	txt_highlight
	txt_next
	txt_nextgram
	txt_overlap
	txt_paste
	txt_previous
	txt_previousgram
	txt_recode
	txt_recode_ngram
	txt_sample
	txt_sentiment
	txt_show
	txt_tagsequence
	udpipe
	udpipe_accuracy
	udpipe_annotate
	udpipe_annotation_params
	udpipe_download_model
	udpipe_load_model
	udpipe_read_conllu
	udpipe_train
	unique_identifier
	unlist_tokens
	Index

